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Computational prediction of signal peptides (SPs) and
their cleavage sites is of great importance in compu-
tational biology; however, currently there is no available
method capable of predicting reliably the SPs of archaea,
due to the limited amount of experimentally verified
proteins with SPs. We performed an extensive literature
search in order to identify archaeal proteins having
experimentally verified SP and managed to find 69 such
proteins, the largest number ever reported. A detailed
analysis of these sequences revealed some unique features
of the SPs of archaea, such as the unique amino acid
composition of the hydrophobic region with a higher than
expected occurrence of isoleucine, and a cleavage site
resembling more the sequences of gram-positives with
almost equal amounts of alanine and valine at the pos-
ition-3 before the cleavage site and a dominant alanine at
position-1, followed in abundance by serine and glycine.
Using these proteins as a training set, we trained a hidden
Markov model method that predicts the presence of the
SPs and their cleavage sites and also discriminates such
proteins from cytoplasmic and transmembrane ones. The
method performs satisfactorily, yielding a 35-fold cross-
validation procedure, a sensitivity of 100% and specificity
98.41% with the Matthews’ correlation coefficient being
equal to 0.964. This particular method is currently the
only available method for the prediction of secretory SPs
in archaea, and performs consistently and significantly
better compared with other available predictors that were
trained on sequences of eukaryotic or bacterial origin.
Searching 48 completely sequenced archaeal genomes we
identified 9437 putative SPs. The method, PRED-
SIGNAL, and the results are freely available for aca-
demic users at http://bioinformatics.biol.uoa.gr/PRED-
SIGNAL/ and we anticipate that it will be a valuable tool
for the computational analysis of archaeal genomes.
Keywords: archaea/hidden Markov model/prediction/secreted
proteins/signal peptide

Introduction

In all three domains of life (bacteria, eukarya and archaea),
proteins that are destined to be exported from the cytoplasm
are generally (but not exclusively) synthesized as precursor
proteins, bearing a cleavable N-terminal signal sequence.
The signal peptide (SP) in all cases (bacteria, eukarya and
archaea) is composed of a positively charged region at the
n-terminus (n-region), a hydrophobic region (h-region) that

spans the membrane and a c-region of mostly small and
uncharged residues ending at the characteristic cleavage
site (von Heijne, 1990). The SP is necessary for targeting the
protein to the membrane-embedded export machinery in bac-
teria (Driessen and Nouwen, 2008), Eukaryotes (Rapoport
et al., 1999) and archaea (Pohlschroder et al., 2005). Upon
translocation across the membrane, the SP is cleaved from
the precursor via a membrane-bound signal peptidase (van
Roosmalen et al., 2004; Tuteja, 2005). The enzyme is called
Spase I in bacteria and orthologues are found in archaea as
well as in Eukaryotes. In Eukaryotes, proteins targeted to the
organelles of bacterial origin (mitochondria and chloroplasts)
also contain cleavable N-terminal targeting sequences,
although they are in general very different from those found
in the eukaryotic or bacterial secreted proteins (von Heijne
et al., 1989; Habib et al., 2007). In addition, in bacteria (as
well as in chloroplasts), another major pathway has been dis-
covered, utilizing the twin-arginine (Tat) translocase, which
recognizes longer and less hydrophobic (SPs) that carry a
distinctive pattern of two consecutive arginines (R-R) in the
n-region (Teter and Klionsky, 1999; Berks et al., 2005; Lee
et al., 2006). A major functional differentiation between the
Sec and Tat export pathways lies in the fact that the former
translocates secreted proteins unfolded through a protein-
conducting channel, whereas the latter, translocates comple-
tely folded proteins using an unknown mechanism (Teter and
Klionsky, 1999).

In bacteria, a second signal peptidase (Spase II or Lsp)
has been discovered in membrane-bound lipoproteins
(Sankaran and Wu, 1995), that cleaves shorter SPs carrying a
distinctive c-region containing a conserved cysteine (von
Heijne, 1989). The conserved cysteine is indispensable in
both gram-positive and gram-negative bacteria, and is
necessary for membrane anchoring. The post-translational
lipid modification involves three enzymes that act sequen-
tially: the prolipoprotein diacylglyceryl transferase (Lgt), that
transfers a diacylglyceride to the cysteine sulfydryl group,
the signal peptidase II (Spase II or Lsp) that cleaves the SP
at the residue before the cysteine forming an apolipoprotein
and the apolipoprotein N-acyltransferase (Lnt), which acy-
lates the a-amino group of the apolipoprotein N-terminal
cysteine forming the mature lipoprotein (Sankaran and Wu,
1994; Sankaran et al., 1995). Although dozens of putative
lipoproteins have been identified in archaeal genomes, the
absence of Spase II orthologues in archaea as well as the
different post-translational modification of cysteine, have
resulted in a limited level of knowledge concerning archaeal
lipoproteins and a lack of experimentally verified proteins of
that type. Translocation of lipoproteins through the Tat
pathway has been postulated based on sequence analysis, but
only recently has been proven for the Bacterium
Desulfovibrio vulgaris (Valente et al., 2007) and the
Archaeon Haloferax volcanii (Gimenez et al., 2007).
Interestingly, in halophilic archaea, the components of the
Tat pathway are essential for viability (Dilks et al., 2005;
Thomas and Bolhuis, 2006) and there is evidence that
Tat-dependent translocation is widely used as part of a
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mechanism for adaptation to extreme saline environments
(Rose et al., 2002).

Computational prediction of secretory SPs was performed
initially using weight matrices (von Heijne, 1986). However,
Neural Networks (Nielsen et al., 1997; Nielsen et al., 1999)
as well as hidden Markov models (HMM) (Nielsen and
Krogh, 1998) introduced by the SignalP method, have been
proven to be the most successful methods currently available
(Menne et al., 2000). Recently, SignalP was retrained and,
mainly due to better annotation and selection of the training
set, yielded an even better accuracy (Bendtsen et al., 2004),
whereas the program TatP has been presented offering the
most accurate classification of TAT SPs (Bendtsen et al.,
2005). A different approach has been followed in the Phobius
method (Kall et al., 2004; Kall et al., 2007), where a HMM
was used to predict at the same time the presence of a
secretory SP and transmembrane (TM) topology of a given
protein. Following this approach, the authors showed that
they can minimize the number of SPs predicted as TM seg-
ments and vice versa. Concerning lipoproteins, for years,
regular expression patterns were used based on the von
Heijne rule (von Heijne, 1989), with various modifications
(Madan Babu and Sankaran, 2002; Sutcliffe and Harrington,
2002; Madan Babu et al., 2006; Setubal et al., 2006).
Recently, a method called Lipop was developed, which is
based on HMMs and was trained exclusively on gram-
negative bacteria lipoproteins (Juncker et al., 2003).
However, the previously mentioned prediction methods have
been trained on bacterial and/or eukaryal sequences, and in
most cases there are different versions of the predictors
aiming at capturing the distinct sequence features of the SPs
of particular groups of organisms. Since very few experimen-
tally verified SPs have been characterized from archaea, little
is known about the precise characteristics of these sequences,
even though there is some evidence suggesting that archaeal
SPs exhibit a mixture of characteristics found in eukarya and
bacteria. The first computational work on archaea was per-
formed by Nielsen et al. (1999) when they applied SignalP
on the genome of Methanococcus jannaschii (M. jannaschii).
They used the three versions of SignalP (trained on gram-
positive bacteria, gram-negative bacteria and eukarya), and
identified 34 proteins where the predictions concerning the
existence of the SP coincided. A more systematic evaluation
was performed later by Bardy et al. (2003), which applied a
similar procedure on 15 completely sequenced genomes of
archaea, requiring though, that all the three methods would
predict the same cleavage site. Although this procedure may
be biased to select only proteins that share common features
with the sequences found in other domains of life, the
general conclusions of these studies suggested that archaeal
SPs exhibit a more eukaryotic-like cleavage site (c-region),
and a unique h-region resembling the bacterial ones, with a
slight over-representation of leucine and isoleucine; leucine
is by far the dominant residue in Eukaryotes. Thus, it is
evident now that SP predictors trained on eukaryal or bac-
terial proteins cannot reliably be applied to archaeal
sequences. A dedicated prediction method is needed that
would be trained exclusively on archaeal SPs. The major
problem in this respect is the lack of a large number of
experimentally verified signal sequences of archaeal origin.
In particular, the Uniprot database (Wu et al., 2006) lists
only 12 archaeal sequences with experimentally verified,

precise locations of the cleavage site, and the specialized
database of SPs SPDB (Choo et al., 2005) lists only nine
such proteins.

Materials and methods

Hidden Markov model
The HMM that we used is similar to the one proposed by
SignalP (Nielsen and Krogh, 1998). It consists of three
different sub-models, the SP sub-model corresponding to the
secretory SPs, the N-terminal TM sub-model corresponding
to the N-terminal TM segment domain, and a globular sub-
model used to model the globular N-terminal domains of
cytoplasmic or membrane proteins. The central core of the
model is the SP sub-model (Fig. 1). It is used to capture the
modular nature of SPs, modeling the positively charged
n-region, the hydrophobic h-region that spans the membrane
and the c-region of mostly small and uncharged residues
ending at the characteristic cleavage site (A-X-A) (von
Heijne, 1990). The TM sub-model, is identical to the one
used by the HMM-TM predictor for alpha-helical membrane
proteins (Bagos et al., 2006), whereas the globular sub-
model consists simply of a self-transitioning state.

The model was trained using the Baum–Welch algorithm
for labeled sequences (Krogh, 1994) and the decoding was
performed using the standard Viterbi algorithm (Durbin
et al., 1998), although more advanced techniques such as the
Posterior-Viterbi decoding (Fariselli et al., 2005) and the
Optimal Accuracy Posterior Decoder (Kall et al., 2005) yield
nearly identical results. In addition to the Viterbi decoding
which produces the optimal path of states through the model,
and hence predicts simultaneously the type of the sequence
(SP, TM or Globular) as well as the cleavage site (if any),
we also report the S1 reliability index (Melen et al., 2003),
which takes values in the range [0–1] and provides a useful
measure of the reliability of the prediction. Given that the

Fig. 1. Architecture of the HMM used to model the secretory SP sequences.
Each line (top to bottom) corresponds to the n-, h- and c-region,
respectively. States in the n- and h-region that share the same emission
probabilities (amino acid frequencies) are depicted using the same symbol.
The cleavage site is shown using a dashed vertical line between A and 1
(first amino acid of the mature protein). Allowed transitions are depicted
with arrows. B and E correspond to the Begin and End states, respectively,
whereas states after the cleavage site (1–5 and M) are used to model the
first residues of the mature protein.
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majority of the SPs used (discussed later) did not contain
information concerning the precise cleavage site location, an
‘imputation’ or ‘re-labeling’ method had to be used.
Although the location of the cleavage site in proteins with
non-verified cleavage sites could be predicted by other
means, we chose to train an initial model using the verified
proteins, and afterwards to apply the method on the non-
verified ones, performing a constrained prediction by remov-
ing the labels in the area of the cleavage site (c-region) as
described earlier (Krogh et al., 2001; Bagos et al., 2006).

Data sets
As we noted earlier, the publicly available databases, such as
Uniprot (Wu et al., 2006) and SPDB (Choo et al., 2005), cur-
rently contain annotated information for only a few archaeal
sequences with experimentally verified precise locations of
the cleavage site. Thus, we decided to perform an extensive
literature search in order to identify archaeal sequences with
either verified cleavage site locations, or proteins with veri-
fied SPs whose cleavage sites are not precisely known. The
literature search was performed on Pubmed using terms such
as ‘SP’ or ‘signal sequence’, combined with terms such as
‘archaeon’, ‘archaea’ or ‘archaebacteria’. Since this strategy
yielded also a limited number of archaeal peptides, and
given that in many known cases the information concerning
the presence of the SP was not available in the abstract or
the title of the respective papers, we used additional search
terms such as ‘extracellular’, ‘extracytoplasmic’ or
‘secreted’. The full-text of the papers were downloaded and
read, and the reference lists were also checked in order to
identify additional studies that were missed by the initial
search. The identified sequences in almost every case were
retrieved from Uniprot (Wu et al., 2006), and were classified
according to two criteria; the first is whether the protein has
a verified SP cleavage site or not, and the second is whether
the protein is translocated using the Tat or the Sec system.
Lipoprotein SPs were removed since there are only few such
examples (see Results and discussion).

Since the model is also capable of discriminating SPs
from globular proteins as well as from proteins with an
N-terminal TM helix, we used as negative examples 69
archaeal proteins with an annotated (proven or putative) TM
segment within the first 70 amino acids having the
N-terminus located in the cytoplasmic space, and 183
archaeal cytoplasmic proteins. The sequences were retrieved
from Uniprot and identical sequences were removed to
produce a unique set. The training and testing procedure was
performed using a 35-fold cross-validation procedure. The
training set was split in 35 parts having approximately the
same number of SPs, TM and cytoplasmic proteins. The
training procedure consisted of removing one of the 35
subsets from the training set, training the model with the
remaining proteins and performing the test on the proteins of
the set that was removed. This process was repeated in
tandem for all the subsets in the training set, and the final
prediction accuracy summarized the outcome of all indepen-
dent tests. Sequences belonging to different subsets used for
cross-validation not had .18 identical residues within the
SP as advised by previous studies (Nielsen et al., 1997;
Nielsen et al., 1999). Finally, the complete proteomes of
archaea were downloaded from the NCBI ftp site at ftp://
ftp.ncbi.nih.gov/.

For measures of accuracy in the binary classification
problem (signal peptides versus non-SPs), we used the per-
centage of correctly classified positive examples (sensitivity),
the percentage of correctly classified negative examples
(specificity) and the Matthews’ correlation coefficient
(MCC) that summarizes in a single measure true positives
(TP), false positives (FP), true negatives (TN) and false
negatives (FN) (Baldi et al., 2000).

Results and discussion

The extensive literature search that we performed identified
in total 69 archaeal proteins with a verified SP (Table I).
Among them, 24 proteins have cleavage sites that were
defined precisely by direct sequencing of the N-terminus of
the mature protein. The 69 proteins listed in Table I include
many extracellular secreted enzymes (proteases, chitinases,
amylases, etc), several surface (S-layer) proteins, a few extra-
cellular components of ABC transporter systems, as well as
some uncharacterized proteins from the two main kingdoms
of archaea (Crenarchaeota and Euryarchaeota). A few
sequences were discarded since they were identical in the SP
sequence with others in the set (i.e. CSG_METSC which is
identical to CSG_METFE and Q7LYT7_PYRWO which is
identical to O08452_PYRFU) as well as one sequence
(Q97X08_SULSO) for which there was evidence suggesting
that it was membrane-anchored (Ferrer et al., 2005). Only
two couples of sequences had .18 identical residues in a
BLAST alignment (CSG_METJA with Q6M088_METMP
and HLY_HAL17 with Q5RLZ1_NATMA) though having
different cleavage sites. Thus, we decided to keep them in
the training set and include them in the same subset used for
cross-validation in order to be tested simultaneously (to
avoid overfitting). A number of proteins with a lipoprotein
SP that was either proven (Gimenez et al., 2007) or putative
(Mattar et al., 1994) were also discarded. We did not try
specifically to eliminate Tat SPs (the same was done in
SignalP), and in total 18 such sequences are included in the
set, of which four contained a verified cleavage site.

The alignment of the SPs at their respective cleavage sites
(Fig. 2) is useful in order to obtain insight into the unique
sequence features of the archaeal SPs. The sequence logos
(Schneider and Stephens, 1990; Crooks et al., 2004) in Fig. 2
reveal the similarities and differences between the exper-
imentally verified SPs of archaea, Eukaryotes, gram-positive
and gram-negative bacteria [data for Eukaryotes and bacteria
were taken from the set of SignalP (Nielsen et al., 1997)].
We can see that at position-1 ( just before the cleavage site),
alanine (A) is the dominant amino acid, although glycine (G)
and serine (S) are also present in significant proportions.
Alanine is also the dominant amino acid in all organism
groups, though in Eukaryotes other amino acids are more
easily tolerated compared with bacteria. At position-3,
alanine is also the dominant amino acid, however, valine (V)
is also almost equally represented in archaea followed by
serine, isoleucine (I) and threonine (T). Taken together, these
features suggest that the archaeal cleavage site resembles
more closely that of gram-positive bacteria signals, although
some resemblance to the eukaryal ones is visible. In the
h-region of archaeal SPs, alanine, leucine and isoleucine are
almost equally abundant whereas valine is less frequent, a
feature that is unique to the archaeal domain. In eukaryal
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Table I. Data set of 69 experimentally verified SPs identified in this studya

Uniprot ID (Wu et al.,
2006)

Organism Sec/
Tat

Cleavage site (Ref.) Function

CAH_METTE Methanosarcina thermophila Sec Verified (Alber and Ferry, 1994) Carbonic anhydrase
CSG_HALJP Haloarcula japonica Sec Verified (Wakai et al., 1997) S-layer protein
CSG_HALSA Halobacterium salinarium (H. salinarium) Sec Verified (Lechner and Sumper,

1987)
S-layer protein

CSG_HALVO Halobacterium volcanii (H. volcanii) Sec Verified (Sumper et al., 1990) S-layer protein
CSG_METFE Methanothermus fervidus Sec Verified (Brockl et al., 1991) S-layer protein
CSG_METJA Methanocaldococcus jannaschii

[Methanococcus jannaschii (M. jannaschii)]
Sec Verified (Akca et al., 2002) S-layer protein

CSG_METVO Methanococcus voltae Sec Verified (Dharmavaram et al., 1991) S-layer protein
HAH4_HALME Halobacterium mediterranei

(H. mediterranei)
Tat Verified (Cheung et al., 1997) Halocin-H4

HMEA_ARCFU Archaeoglobus fulgidus Tat Verified (Mander et al., 2002) Hdr-like menaquinol oxidoreductase
iron-sulfur subunit 1

Q12VE2_METBU Methanococcoides burtonii (M. burtonii) Sec Verified (Saunders et al., 2006) S-layer-related protein
Q12UJ4_METBU M. burtonii Sec Verified (Saunders et al., 2006) Ig-like protein
Q12WA9_METBU M. burtonii Sec Verified (Saunders et al., 2006) Uncharacterized protein
Q12WY2_METBU M. burtonii Sec Verified (Saunders et al., 2006) Uncharacterized protein
Q12WZ0_METBU M. burtonii Sec Verified (Saunders et al., 2006) Uncharacterized protein
Q12UD6_METBU M. burtonii Sec Verified (Saunders et al., 2006) Uncharacterized protein
Q12X64_METBU M. burtonii Sec Verified (Saunders et al., 2006) Uncharacterized protein
Q980C6_SULSO Sulfolobus solfataricus (S. solfataricus) Sec Verified (Albers and Driessen, 2002) Uncharacterized protein
Q97UG7_SULSO S. solfataricus Sec Verified (Albers and Driessen, 2002) ABC transporter component
Q97VF7_SULSO S. solfataricus Sec Verified (Albers and Driessen, 2002) ABC transporter component
Q97UH5_SULSO S. solfataricus Sec Verified (Albers and Driessen, 2002) ABC transporter component
Q60224_9EURY Natronococcus sp Tat Verified (Pohlschroder et al., 2005) Alpha-amylase
Q6M088_METMP Methanococcus maripaludis Sec Verified (Pohlschroder et al., 2005) S-layer protein
Q9YBL5_AERPE Aeropyrum pernix (A. pernix) Sec Verified (Palmieri et al., 2006) ABC transporter component
Q97V37_SULSO S. solfataricus Tat Verified (Pohlschroder et al., 2005) Oxydoreductase
Q97VS7_SULSO S. solfataricus Sec Non-verified (Limauro et al., 2001) Endo-1,4-beta-glucanase
Y958_METJA M. jannaschii Sec Non-verified (Bult et al., 1996) Uncharacterized protein
THPS_SULAC Sulfolobus acidocaldarius Sec Non-verified (Lin and Tang, 1990) Thermopsin
HLY_HAL17 Halophilic archaebacteria (strain 172p1) Tat Non-verified (Kamekura et al.,

1992)
Halolysin

TKSU_PYRKO Pyrococcus kodakaraensis (P. kodakaraensis) Sec Non-verified (Kannan et al., 2001) Tk-subtilisin
PLS_PYRFU Pyrococcus furiosus (P. furiosus) Sec Non-verified (Voorhorst et al., 1996) Pyrolysin
Y1033_SULSO S. solfataricus Sec Non-verified (She et al., 2001) Kelch domain-containing protein
Y1435_PYRAB Pyrococcus abyssi Sec Non-verified (Cohen et al., 2003) Uncharacterized protein
Y614_PYRHO Pyrococcus horikoshii (P. horikoshii) Sec Non-verified (Kawarabayasi et al.,

1998)
Uncharacterized protein

Y939_SULTO Sulfolobus tokodaii Sec Non-verified (Kawarabayasi et al.,
2001)

Kelch domain-containing protein

Contig 3108 H. volcanii Tat Non-verified (Gimenez et al., 2007) Exo-arabinanase
Contig 3156 H. volcanii Tat Non-verified (Gimenez et al., 2007) Pectate lyase
Contig 3082 H. volcanii Tat Non-verified (Gimenez et al., 2007) Halocyanin 2
Contig 2996 H. volcanii Tat Non-verified (Gimenez et al., 2007) Halocyanin 3
Q2TME8_HALSA H. salinarium Tat Non-verified (Shi et al., 2006) SptA protease
Q4A3E0_HALHI Haloarcula hispanica Tat Non-verified (Hutcheon et al., 2005) Alpha-amylase
Q6JSL9_HALAS Halobacterium sp (strain AS7092) Tat Non-verified (Sun et al., 2005) Halocin C8
Q5RLZ1_NATMA Natrialba magadii Tat Non-verified (Ruiz and De Castro,

2007)
Halolysin-like extracellular serine
protease

O08452_PYRFU P. furiosus Sec Non-verified (Wang et al., 2007) alpha-amylase
Q9HQ20_HALSA H. salinarium Sec Non-verified (Woodson et al., 2005) ABC transporter component
Q9YFI3_AERPE A. pernix Sec Non-verified (Catara et al., 2003) Pernisine
Q9UWN2_9EURY Thermococcus sp B1001 Sec Non-verified (Hashimoto et al.,

2001)
Cyclodextrin glucanotransferase

Q9UWR7_PYRKO P. kodakaraensis Sec Non-verified (Tanaka et al., 1999) Chitinase
Q9Y9Y8_AERPE A. pernix Sec Non-verified (Sako et al., 1997) Serine protease
O93635_THESU Thermococcus stetteri Sec Non-verified (Voorhorst et al., 1997) Stetterlysin
Q48929_METBR Methanobacterium bryantii Sec Non-verified (Kim et al., 1995) Copper response extracellular protein
Q5V573_HALMA Haloarcula marismortui Tat Non-verified (Goldman et al., 1990) Alkaline phosphatase D
Q9HHB0_9CREN Desulfurococcus mucosus Sec Non-verified (Duffner et al., 2000) Pullulanase
O58925_PYRHO P. horikoshii Sec Non-verified (Kashima et al., 2005) Endo-1,4-beta-glucanase
P71402_HALME H. mediterranei Tat Non-verified (Kamekura et al.,

1996)
Serine protease halolysin R4

Q97VC2_SULSO S. solfataricus Sec Non-verified (Chong and Wright,
2005)

Uncharacterized protein

Q97UF5_SULSO S. solfataricus Tat Non-verified (Chong and Wright,
2005)

ABC transporter component

Q9HSH6_HALSA H. salinarium Tat Non-verified (Izotova et al., 1983) Serine protease

Continued
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SPs, leucine is clearly the dominant amino acid (followed by
equal amounts of alanine and valine) whereas in bacteria
alanine and leucine are almost equally present. In both cases
isoleucine is under-represented, in contrast with what is seen
in archaea. Furthermore, the c-region contains mostly small
and uncharged residues (serine, glycine, threonine and
proline), whereas in the n-region Lysine is slightly more fre-
quent than arginine despite the presence of 18 Tat SPs in the
training set. Some of these observations were touched on in
earlier works (Nielsen et al., 1999; Bardy et al., 2003). Here
these patterns are analyzed for the first time based on exper-
imentally verified archaeal SPs rather than solely on predic-
tions. The results suggest that archaeal SPs are of unique
composition, and that there is a need for a dedicated predic-
tion method.

The results obtained in the 35-fold cross-validation pro-
cedure are listed in Table II. Our method, PRED-SIGNAL,
predicts correctly all the 69 SPs and rejects correctly 248 out
of the 252 cytoplasmic and TM proteins. These results corre-
spond to 100% sensitivity and 98.41% specificity with an
MCC equal to 0.964. Using the same data set, we evaluated
also the various versions of the SignalP method (Nielsen
et al., 1997; Nielsen and Krogh, 1998; Nielsen et al., 1999;
Bendtsen et al., 2004), Phobius (Kall et al., 2004; Kall et al.,
2007) and PrediSi (Hiller et al., 2004), which is another
popular and accurate SP predictor based on position specific
scoring matrixs (PSSMs). The method developed here
clearly outperforms all the currently available top-scoring
predictors. This was expected, since none of them was
trained specifically to recognize archaeal SPs. In absolute
numbers, the method is very accurate and is comparable
with, if not better than, the currently top-scoring method
SignalP. SignalP, when trained and independently tested on
gram-positive bacteria, gram-negative bacteria, and
Eukaryotes respectively, reports sensitivities ranging from 92
to 99%, specificities ranging from 85 to 93% and MCCs
ranging from 0.87 to 0.92, when only cytoplasmic proteins
are used as negative examples (Nielsen et al., 1997; Bendtsen
et al., 2004). When proteins with an N-terminal TM segment
are included in the test-set, the specificity drops ,90%, as

was shown in an earlier evaluation study (Menne et al.,
2000). From Table II, it is also clear that among predictors
trained on data sets of origin other than archaea, those trained
on gram-positive bacteria perform better in predicting archaeal
signal sequences, a fact that can be explained by the compo-
sition of the c-region in archaeal SPs discussed earlier. Of
these methods, only SignalPv3-NN trained on gram-positive
bacteria compares with the method that we developed, having
a slightly better specificity but, nevertheless, a lower sensi-
tivity and overall performance (MCC).

Furthermore, the results obtained by using a combination of
different SP predictors (i.e. the SignalP modules trained on
Eukaryotes, gram-positive and gram-negative bacteria) illus-
trate the difficulties of such an approach. It is clear that
although such an approach increases the specificity of the
selection (i.e. few FPs), the sensitivity decreases (i.e. more
FNs). Thus, this strategy (which was until now the only
option), reliably predicts some SPs but at the same time over-
looks a large number of true SPs. Some general conclusions
could also been drawn from these results, verifying previous
studies. As we noted earlier, methods trained on gram-positive
bacteria (SignalPv2, SignalPv3 and PrediSi) perform slightly
better compared with their gram-negative counterparts and
clearly better compared with the Eukaryotic-based ones.
Phobius, which was trained on a mixed set of proteins (gram-
positive, gram-negative and Eukaryote), performs well also,
but places lower than methods trained on gram-positive bac-
teria as well as methods trained on gram-negative bacteria.
HMM methods that were trained to discriminate N-terminal
TM regions from SPs (Phobius, SignalP-HMM) perform
better in terms of specificity compared with Neural Networks
and PSSM methods (SignalP-NN, PrediSi). On the other
hand, Neural Network-based methods (SignalP-NN) are better
in predicting the precise cleavage site location (data not
shown). Finally, the updated versions of SignalP (SignalPv3)
perform in general better compared with the older versions
(SignalPv2).

We also analyzed 48 currently available archaeal comple-
tely sequenced genomes. The combined prediction of the
three HMM predictors of SignalPv3 (gram-positive, gram-

Table I. Continued

Uniprot ID (Wu et al.,
2006)

Organism Sec/
Tat

Cleavage site (Ref.) Function

Q5JGP8_PYRKO P. kodakaraensis Sec Non-verified (Morikawa et al.,
1994)

Thiol protease

Q9V2T0_PYRFU P. furiosus Sec Non-verified (Bauer et al., 1999) Endoglucanase A
Q8NKS8_THELI Thermococcus litoralis Sec Non-verified (Brown and Kelly,

1993)
Amylopullulanase

Q3HUR3_PYRFU P. furiosus DSM 3638 Sec Non-verified (Brown and Kelly,
1993)

Amylopullulanase

Q8U0C9_PYRFU P. furiosus Sec Non-verified (Comfort et al., 2008) Alkaline serine protease
Q8U1U6_PYRFU P. furiosus Sec Non-verified (Comfort et al., 2008) Starch-binding protein
Q6L252_PICTO Picrophilus torridus Sec Non-verified (Serour and

Antranikian, 2002)
Glucoamylase

Q53I75_HALME H. mediterranei Tat Non-verified (Perez-Pomares et al.,
2003)

Putative alpha-amylase

O50200_9EURY Thermococcus sp Rt3 Sec Non-verified (Jones et al., 1999) Amylase
Q9Y8I8_THEHY Thermococcus hydrothermalis

(T. hydrothermalis)
Sec Non-verified (Erra-Pujada et al.,

1999)
Pullulanase

Q2QC88_9EURY Thermococcus onnurineus Sec Non-verified (Lim et al., 2007) Alpha-amylase
O93647_THEHY T. hydrothermalis Sec Non-verified (Leveque et al., 2000) Alpha-amylase

aWe listed the Uniprot ID, the organism, the translocation pathway (Sec/Tat) and the status of the cleavage site, along with the respective reference and the
protein’s function.
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negative and Eukaryotic) produced in total 6145 proteins
with a SP, of which 2306 proteins have the same predicted
cleavage site for all three methods. The combination of the

NN predictors of SignalPv3 yielded 5473 predictions in total
of which 2037 have the same prediction for the cleavage
site. On the contrary, the method developed here predicts in

Fig. 2. Left panel (from top to bottom): the sequence logos of experimentally verified eukaryal, gram-positive, gram-negative and archaeal signal peptides
(SPs), respectively, produced by WebLogo (Crooks et al., 2004). The experimentally verified bacterial and eukaryal SPs were retrieved from the data set of
SignalP. Right panel (from top to bottom): the sequence logos of SPs found in the genome analysis of 48 archaeal genomes (see text) as predicted by
SignalPv3-NN, SignalPv3-HMM, PrediSi and PRED-SIGNAL (this work), respectively. The predictions of SignalP and PrediSi correspond to proteins
predicted to have the exactly the same cleavage site by different modules of the respective predictor (see text for details). Sequences are aligned to the
observed or predicted cleavage site which in all cases is arbitrarily located between 35th and 36th amino acid of the alignment.
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total a much larger number of proteins with signal
sequences, 9437 in all. Among these proteins, according to
their annotation the largest group consisted of 5351 hypothe-
tical proteins (56.7%), followed by 1408 (14.92%) enzymes
such as lipases, hydrolases, transferases, proteases, kinases,
reductases, etc, of which 127 were probable, putative or pre-
dicted. There were also 832 (8.81%) membrane proteins such
as permeases, transporters, etc of which 82 were probable,
putative or predicted and 1024 (10.85%) extracellular pro-
teins (mostly solute-binding components of ABC transport
systems, as well as S-layer and flagellar proteins) of which
43 were probable, putative or predicted. Finally, there were
822 proteins that could not be classified (8.71%).

The detailed results for each genome are available as
Supplementary data in our web site (http://bioinformatics.
biol.uoa.gr/PRED-SIGNAL/). The per-genome percentage of
predicted proteins carrying a SP according to our method,
ranges from 5 to 14% (average ¼ 8.92%) whereas the same
percentage according to the combination of SignalP predic-
tors ranges from 3 to 7%. According to our results, the 15
archaeal genomes belonging to Crenarchaeota do not differ
significantly from the 32 genomes belonging to
Euryarchaeota (8.54 versus 9.16%, P-value ¼ 0.406 accord-
ing to t-test) concerning the proportion of proteins predicted
to contain a SP. The only representative of Nanoarchaeota
(Nanoarchaeum equitans) contains a comparable proportion
of secreted proteins (7.09%) although produced by a signifi-
cantly smaller genome (38 out of the 536 total coding
sequences). In an ANOVA analysis, psychrophiles, meso-
philes, thermophiles and hyperthermophiles did not show
any statistical difference concerning the proportion of pro-
teins carrying a SP (range from 8.2 to 10.7%, P-value ¼
0.087). Only the six thermoacidophiles showed a smaller

proportion (6.58%), whereas one haloalkalophile (13.8%)
and the three halophiles (12.53%) showed larger proportions.
The amino acid distribution of SPs of all the groups exam-
ined using sequence logos did not detect any obvious discre-
pancies (data not shown). The only detectable difference was
the over-representation of alanine and glycine and the under-
representation of isoleucine in the h-region of SPs of halo-
philes and haloalkalophiles. These results need to be studied
further, but clearly the large proportion of secreted proteins
as well as the abundance of glycine and alanine that suggest
a lower hydrophibicity in the h-region of SPs of halophiles,
should be attributed to the extensive use of the Tat pathway.
PRED-SIGNAL does not discriminate Tat from Sec SPs, and
we expect a lot of the secreted proteins of halophiles to
contain a Tat SP (Rose et al., 2002).

Among the proteins predicted by the combination of the
HMM versions of SignalP, only 685 were not predicted by
our predictor, and among the proteins predicted by the com-
bination of the NN versions of SignalP, 749 were not pre-
dicted as having a SP by PRED-SIGNAL. Thus, the HMM
method developed here is very specific in detecting putative
SPs that are considered highly probable (as judged by the
stringent criteria applied by the combination of the SignalP
predictors). On the other hand, PRED-SIGNAL predicts an
additional large number of proteins that were selected by
only one or two modules of SignalP, and a remarkably large
number of proteins that were not selected by either one of
the versions of SignalP (1039 for the HMM versions and
1139 for the NN versions). This highlights that although the
stringent criteria applied by combining the different predic-
tors of SignalP can indeed select a large number of archaeal
SPs sharing common features with bacterial and eukaryotic
SPs, an additional large number of putative SPs exist that

Table II. Results obtained from PRED-SIGNAL using the cross-validation procedure on the set of 69 experimentally verified SPs and on 69 TM and 183 cyto-

plasmic archaeal proteinsa

Method: PRED-SIGNAL Sensitivity: 69/
69 (100.00%)

Specificity (TM
proteins): 67/69 (97.10%)

Specificity (cytoplasmic
proteins): 181/183 (98.91%)

Specificity (Total):
248/252 (98.41%)

MCC:
0.964

SignalPv3-NN (gramþ) 66/69 (95.65%) 68/69 (98.55%) 183/183 (100.00%) 251/252 (99.60%) 0.963
SignalPv3-NN (gram2) 61/69 (88.41%) 66/69 (95.65%) 183/183 (100.00%) 249/252 (98.80%) 0.897
SignalPv3-NN (Euk) 55/69 (79.71%) 55/69 (79.71%) 182/183 (99.45%) 237/252 (94.05%) 0.734
SignalPv3-NN (all) 33/69 (47.83%) 69/69 (100.00%) 183/183 (100.00%) 252/252 (100.00%) 0.647
SignalPv3-HMM (gramþ) 65/69 (94.20%) 66/69 (95.65%) 183/183 (100.00%) 249/252 (98.80%) 0.935
SignalPv3-HMM (gram2) 64/69 (92.75%) 66/69 (95.65%) 180/183 (98.36%) 246/252 (97.62%) 0.899
SignalPv3-HMM (Euk) 59/69 (85.51%) 67/69 (97.10%) 182/183 (99.45%) 249/252 (98.80%) 0.877
SignalPv3-HMM (all) 29/69 (42.03%) 69/69 (100.00%) 183/183 (100.00%) 252/252 (100.00%) 0.602
SignalPv2-NN (gramþ) 66/69 (95.65%) 49/69 (71.01%) 171/183 (93.44%) 220/252 (87.30%) 0.740
SignalPv2-NN (gram2) 66/69 (95.65%) 51/69 (73.91%) 176/183 (96.17%) 227/252 (90.07%) 0.781
SignalPv2-NN (Euk) 53/69 (76.81%) 56/69 (81.16%) 180/183 (98.36%) 236/252 (93.65%) 0.705
SignalPv2-NN (all) 35/69 (50.72%) 60/69 (86.96%) 182/183 (99.45%) 242/252 (96.03%) 0.553
SignalPv2-HMM (gramþ) 67/69 (97.10%) 63/69 (91.30%) 182/183 (99.45%) 245/252 (97.22%) 0.920
SignalPv2-HMM (gram2) 65/69 (94.20%) 61/69 (88.41%) 180/183 (98.36%) 241/252 (95.63%) 0.861
SignalPv2-HMM (Euk) 60/69 (86.96%) 67/69 (97.10%) 182/183 (99.45%) 249/252 (98.80%) 0.887
SignalPv3-HMM (all) 29/69 (42.03%) 69/69 (100.00%) 182/183 (99.45%) 251/252 (99.60%) 0.588
PrediSi (gramþ) 61/69 (88.41%) 66/69 (95.65%) 180/183 (98.36%) 246/252 (97.62%) 0.870
PrediSi (gram2) 63/69 (91.30%) 65/69 (94.20%) 180/183 (98.36%) 245/252 (97.22%) 0.881
PrediSi (Euk) 60/69 (86.96%) 52/69 (75.36%) 181/183 (98.91%) 233/252 (92.46%) 0.757
PrediSi (all) 32/69 (46.38%) 68/69 (98.55%) 182/183 (99.45%) 250/252 (99.20%) 0.558
Phobius 58/69 (84.06%) 69/69 (100.00%) 183/183 (100.00%) 252/252 (100.00%) 0.897

v2, version 2; v3, version 3; HMM, hidden Markov model; NN, Neural Network; gramþ, gram-positive; gram2, gram-negative; Euk, Eukaryote; all, the
combination of the three modules.
aFor comparison we list the results obtained by the various modules of SignalP, PrediSi and Phobius. For measures of accuracy (SPs versus non-SPs), we used
the percentage of correctly classified positive examples (sensitivity), the percentage of correctly classified negative examples (specificity) and the MCC
(Matthews’ correlation coefficient) that summarizes in a single measure TP, FP, TN and FN (Baldi et al., 2000).
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possess some unique features not present in SPs of eukary-
otic or bacterial origin. As expected from the analysis of the
training set, the largest agreement of the individual
SignalP-NN modules with PRED-SIGNAL is to the gram-
positive module (correlation coefficient ¼ 0.646), followed
by the gram-negative and Eukaryotic modules. Similar,
although not identical, results hold also for the
SignalP-HMM predictors (data not shown).

Conclusions

In this work, we present a first computational method that
specifically predicts the SPs of archaeal origin and their clea-
vage sites. We performed an extensive literature search in
order to identify SPs with experimentally verified cleavage
sites, as well as verified SPs in which the cleavage site is not
precisely located. The analysis confirms previous results that
suggested a unique composition of archaeal SPs and justifies
our approach for modeling separately the particular
sequences. We used an HMM approach, and trained the
model to discriminate secretory SPs from cytoplasmic pro-
teins as well as from proteins with an N-terminal TM
segment, as these segments are often confused by predictors.
The prediction method was also applied to the currently
available completely sequenced genomes of archaea, and the
results were compared with those of SignalP, which is con-
sidered to be the most accurate predictor of non-archaeal
sequences. The new prediction method, PRED-SIGNAL, and
the secreted proteins identified in the genome analysis are
available online at: http://bioinformatics.biol.uoa.gr/
PRED-SIGNAL/. We anticipate that this method will be a
useful tool for those studying secreted proteins of archaea,
since it could be used in genome annotation, genome-wide
analyses, and for various proteomics applications. Finally,
we note that the modular nature of the HMM allows easily
the extension of the model, i.e. in order to incorporate joint
prediction of Tat SPs or lipoprotein SPs. In our data set we
have included 18 Tat substrates, and we found not .10
archaeal lipoproteins. However, when further experimental
data become available on these classes of SPs in the near
future, the model’s architecture could be easily expanded in
order to include them and allow better discrimination
capability.
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