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Prediction of p-barrel Outer Membrane Proteins
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We attempt to summarize sequence and structural features of B-barrel transmembrane proteins, as they have
recently been exploited in order to devise efficient computational methods for the discrimination of these
proteins in a genomic context and the prediction of the topology of membrane spanning p-strands. We review
a series of prediction methods, ranging from empirical computational schemes, developed in the first days of
protein sequence analysis, to modern state-of-the-art machine-learning bioinformatics algorithms, from both
a historical and a practical perspective. Furthermore, we discuss common pitfalls and inefficiencies in current
methods, at both the initial discrimination step and at the topology prediction stage, suggesting future im-
provements and perspectives in this emerging research field. ,
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Introduction

Biological membranes may be considered both as
barriers of individual cells (or even whole organisms
in the case of unicellular organisms) or cellular
compartments, as well as those structural assemblies
that enable each cell and compartment to interact with
its environment. A number of key cellular functions,
such as signalling under various environmental
stimuli (Klare et al. 2004), chemotaxis (Cochran et al.
2001), solute transport (Saier 2000), cell and molecu-
lar recognition (Wheelock & Johnson 2003), and
immune response (Kurucz et al. 2003), are triggered
or exclusively performed by membrane proteins.
These proteins may be membrane-associated or
integral membrane proteins i.e. proteins having
segments that span the lipid bilayer one or more times.
As a consequence of their importance in living
organisms, transmembrane proteins are often
molecules of outmost pharmaceutical and medical
importance (Axelson 2004). Actually, it has been
estimated that 39 of the top 100 marketed drugs
currently in use act through activation or blockade of
members of a single family of transmembrane
receptors, the G-protein coupled receptors (Menzaghi
et al. 2002).

Transmembrane (TM) proteins may be grossly
classified according to the secondary structure
adopted by the membrane spanning segments,
namely o-helices (isolated or bundled) and B-pleated

- sheets in the form of anti-parallel closed barrels

(figure 1). Proteins in each class possess distinct char-
acteristics, apparently related to the three-dimen-
sional structures adopted by the transmembrane
segments and the underlying folding process. Some
of their structural features reflect the biogenesis of
membrane proteins and the respective membranes,
as well as the corresponding translocation machiner-
ies and the environmental constraints posed by the
specific physicochemical properties of distinct types
of lipid bilayers.

B-helical transmembrane proteins appear to be
abundant in all cellular membranes, whereas
p-barrel transmembrane proteins have been observed
so far only in proteins of the outer membrane of
Gram-negative bacteria. Actually, all bacterial outer
membrane proteins discovered up to now are thought
to belong to this class, constituting a substantial
fraction of the outer membrane mass. Sequence
similarity and further computational analysis (often
combined with low-resolution experimental
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Figure 1. A ribbon diagram of the structure of the OpcA Outer
Membrane Adhesin/Invasin from Neisseria meningitidis (PDB
ID: 1K24; Prince et al. 2002). Aromatic side chains are represented
as rods to illustrate the aromatic belts. The horizontal lines indicate
the approximate position of the lipid bilayer boundaries. The
diagram was drawn using the PyMol molecular graphics package
(DeLano, 2003).

evidence) indicate that transmembrane B-barrels are
also present in the structures of eukaryotic organellar
(mitochondrial or chloroplast) outer membrane pro-
teins. These findings are in accordance with the theory
of endosymbiosis; nevertheless, no high-resolution
structure of such a protein has yet been reported to
the Protein Data Bank (PDB; Berman et al. 2002), in
support of this suggestion.

Early experiments (Unwin 1993) provided initial
evidence for the existence of mixed-folds composed
both of membrane spanning o-helices and p-strands.
However, recent work (Miyazawa et al. 2003) shows
that this early suggestion is not valid. The presence
of a mixture of a-helices and p-strands at the
interface with the lipid bilayer could not easily be
explained, since stabilizing hydrogen bonding
patterns on these secondary structure elements are
not complementary (Schulz 2002, Schulz 2003). Thus,
experimental data available today indicate that
known transmembrane proteins belong exclusively
to the aforementioned structural classes.

Known Transmembrane Protein Structures

Knowing the structure of any protein is a major step
towards understanding its biological function.
High-resolution structures are available for a wide
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variety of globular water-soluble proteins, whereas
the number of unique three-dimensional structures
for transmembrane proteins solved at atomic resolu-
tion to date is relatively small. Some excellent
publicly available resources, namely
http://blanco.biomol.uci.edu
Membrane_Proteins_xtal.html,

http:/ / www.mpibp-frankfurt.mpg.de/michel/
public memprotstruct.html, and

http:/ /www.enzim.hu/PDB_TM

provide up-to-date information about structural data
regarding transmembrane proteins in the Protein Data
Bank. In particular, the Protein Data Bank of Trans-
membrane proteins (PDB_TM; Tusnady et al. 2004),
contains not only a collection of transmembrane pro-
teins with known structure, but also annotations for
their transmembrane segments computed by a
geometrical algorithm that uses as input only the
atomic coordinates on the crystal structure.

Despite the tremendous progress witnessed in
targeted gene expression, protein purification and
crystallization techniques and the advent of the
Structural Genomics era, it is expected that decipher-
ing the molecular structure of transmembrane
proteins at high atomic resolution will remain a
challenging issue in Structural Molecular Biology
(Kyogoku et al. 2003, Loll 2003, Walian et al. 2004).
Computational studies (Pasquier et al. 2001, Chen &
Rost 2002) have already provided more or less
accurate estimates that a-helical transmembrane
proteins constitute a substantial fraction (ranging
between 10-30%) of putative gene products, as
deduced from completely sequenced genomes from
organisms in all domains of life.

These facts, combined with the availability of an
ever-increasing number of complete genomes,
highlight the importance of the development of
reliable discrimination and classification computa-
tional methods to detect and classify transmembrane
proteins. Consequently, accurate algorithms to
predict the positions of the membrane spanning
regions and their topology relative to the lipid bilayer
could provide invaluable information for further
biochemical, structural or pharmaceutical studies.

Several prediction schemes for a-helical
transmembrane proteins have been reported in the
literature since the first relevant publications (Argos
et al. 1982, Kyte & Doolittle 1982), and several
thorough reviews have already been published. In
general, even using the simple assumption that
sufficiently long (approximately > 15 residues) amino
acid stretches of outmost hydrophobicity are
putative transmembrane o-helices, a naive predictor
might be built. Further utilization of statistical
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preferences observed in known transmembrane
proteins (Pasquier et al. 1999) and machine learning
approaches often combined with evolutionary
information (Rost et al. 1996) coming from multiple
sequence alignments result in reasonably selective
and sensitive prediction methods.

The Repertoire of Transmembrane B-barrel
Protein Function

Remarkable advances have been recently made
towards the understanding of bacterial §-barrel form-
ing transmembrane protein structure and function.
Their functional roles and the Biological processes
they are involved in are diverse and may differ
between organisms. Long mobile loops resistant to
proteolysis (OmpA; Morona et al. 1985) or rigid
extensions of the barrel-forming B-strands (OmpX,
Vogt & Schulz 1999) in the extracellular space are
known to provide molecular recognition sites. Porins
are known to mediate the passive transport of small
molecules under different environmental conditions
(OmpF; Danelon et al. 2003, PhoE; Cowan et al. 1992)
or active translocation of larger molecules (FhuA;
Braun et al. 2000, FepA; Zhou et al. 1995). In specific
cases, they participate in secretion pathways of
bacterial exoproteins or type IV pili and flagellar
proteins (secretins; Bitter 2003) and virulence through
adhesion to host cells (OpcA; Prince et al. 2002).

In the type V secretion pathway (auto-
transporters, NalP; Oomen et al. 2004), a C-terminal
B-barrel domain is necessary to form the pore in the
outer membrane, in order to allow the translocation
of the secreted mature protein (passenger domain).
Furthermore, §-barrel transmembrane proteins have
been reported to exhibit key enzymatic activities,
either as extracellular proteases (OmpT; Vandeputte-
Rutten et al. 2003) or phospholipases (OmpLA,
Snijder et al. 1999). Several of these proteins have been
shown to function as monomers, but there are known
cases where oligomerisation is required for their
proper function. Well-known examples for the latter
case are bacterial porins, which function after a
homotrimer is assembled (Tamm et al. 2001). In some
cases, large complexes of outer membrane proteins
(>1MDa), both integral and membrane associated,
have been reported, for example the secreton of
Klebsiella oxytoca (Nouwen et al. 1999).

Proteins of the outer membrane of mitochondria
and chloroplast outer envelope predicted to belong
into this structural class are involved in the major
protein translocation complexes (Tom40; Paschen et
al. 2003, Toc75; Schleiff et al. 2003) of the respective
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organelles, mediate the transport of small molecules
(porin/VDAC; Mannella 1997), or are key factors
determining organelle shape (Mdm10; Sogo & Yaffe
1994). It is noteworthy that high-throughput
proteomic analyses (Paschen et al. 2003, Schleiff et al.
2003) have already started to provide additional
information in a large scale, which may be further
examined by the bioinformatics approaches described
in the following sections. There is also experimental
evidence suggesting the existence of an anion
non-specific porin placed in the peroxisomal
membranes. This protein exhibits different channel
properties than the already characterised porins of
mitochondria and chloroplasts (Reumann et al. 1995).
Elucidation of the structural features of these proteins
will also provide answers to the speculated endosym-
biotic origin of peroxisomes (Borst 1989).

Structural Features of Transmembrane B-barrel
Proteins

Any B-barrel may be considered as a B-sheet that
twists and coils to form a closed barrel-shaped
structure, stabilized by main chain hydrogen bonds
formed between the sheet edges (first and last
strands). Concerning the connections of the individual
strands, different topologies might be associated with
B-barrels, such as a simple meander with antiparallel
B-strands, where neighboring strands in the sequence
are adjacent in the barrel structure, or the more
complicated Greek-key arrangement, with relatively
long connecting loops on either side of the barrel.
Different types of Greek key motifs have been identi-
fied in several structures of globular B-barrel proteins
of diverge functions (Zhang & Kim 2000). Such cases
are the structures of Staphylococcal nuclease (PDB
ID: 1STY; Keefe et al. 1993), mitochondrial
Elongation factor TU (PDB ID: 1D2E; Andersen et al.
2000), and RNA polymerase subunit RBP8 (PDB ID:
1A1D; Krapp et al. 1998).

Observed transmembrane B-barrels preferentially
lay their axis along the membrane normal. All known
transmembrane B-barrels are exclusively composed
of meandering all-next-neighbor antiparallel
B-strands (up and down barrels), suggesting a repeat-
ing B-hairpin structural motif. They are described by
those parameters, namely the number of B-strands n
and the shear number S, that are used to describe all
types of B-barrels (McLachlan 1979, Murzin et al.
1994a). S is a measure of the stagger of the strands in
the sheet. In an early study (McLachlan 1979),
McLachlan showed that # and S determine both the
mean radius of the resulting barrel and the relative
tilt of strands with respect to the barrel’s axis. Fifteen
years later, under the light of further experimental
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evidence, theoretical analysis (Murzin et al. 1994a)
combined with available three-dimensional structures
(Murzin et al. 1994b) proved that these two param-
eters determine all other features of the B-barrel.
Currently, available high-resolution structures of
transmembrane B-barrel proteins include p-barrels of
varying features, with 8 <00 n<22 and 8 <S<24
(Schulz 2003). It is worth mentioning that all trans-
membrane a-barrels observed so far consist of an even
number of strands.

Discrimination of transmembrane a-barrel
proteins is in principle harder than the prediction of
o-helical transmembrane segments. Despite the fact
that transmembrane f-strands in available high-
resolution structures are placed with relatively large
angles with respect to the normal to the lipid bilayer,
they are significantly shorter than transmembrane
o-helices due to their extended conformation, their
lengths being typically between six and twenty-two
residues. A B-strand of between seven and nine
residues length might be sufficiently long to span the
hydrophobic core of the membrane. Additionally,
transmembrane B-strands face different environments
(the hydrophobic exterior of the p-barrel opposed to
the aqueous pore interior), often resulting in alternat-
ing hydrophobic-hydrophilic residues. This alterna-
tion is not always exact, since residues on the outer
surface of the barrel (facing the apolar lipidic
environment) tend to be hydrophobic, whereas
residues pointing to the barrel interior are not always
polar. Even though hydrophobicity peaks in a
classical hydropathy plot coinciding with
amphipathic peaks and p-strand predictions are well
correlated with the location of transmembrane
B-strands (Zhai & Saier 2002), their average hydro-
phobicity is significantly lower than those of
transmembrane o-helical segments. This fact should
be related with the underlying translocation mecha-
nism, since in the opposite case, outer membrane
proteins might be trapped in the inner membrane
during the translocation process. Additionally,
oligomerisation of B-barrel domains inside the lipid
bilayer weakens the necessity for a hydrophobic
barrel exterior, since polar side-chains may provide
favourable interactions at the interaction interface.

Summarising the above factors, the sequence
signal to be detected is rather weak. Furthermore,
common structural features with globular water-
soluble proteins with a -barrel in their three-dimen-
sional structures might lead to a large number of
undesired false positives. Nevertheless, if the amino
acid sequence of such a protein is carefully examined,
several structural characteristics, for example the
predomination of aromatic residues at the interfacial
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positions, might accurately reveal the location of
transmembrane f-strands (for excellent reviews see
Schulz 2002, Schulz 2003).

Atypical Cases

We briefly go through some unusual cases of
transmembrane B-barrel forming proteins that
intentionally were not used in the evaluation of the
methods presented in this review.

A class of proteins excluded from our review
consists of those possessing transmembrane $-barrels
formed by more than one amino acid chain. A pro-
tein belonging to this class is Escherichia coli TolC
(PDB ID: 1EK9; Koronakis et al. 2000). TolC is a mixed
B-barrel and a-helical protein, which spans both the
outer membrane and the periplasmic space of
gram-negative bacteria. Three TolC protomers
assemble to form a continuous, solvent accessible
conduit, a “channel-tunnel” over 140 A long. Each
monomer of the trimer contributes 4 $-strands to the
12-strand B-barrel. Another protein belonging to this
class is B-haemolysin from Staphylococcus aureus and
other microbial toxins such as aerolysin and the
anthrax-protective antigen. In the case of
o-haemolysin, it has been shown (PDB ID: 7AHL;
Song et al. 1996) that it is active as a transmembrane
heptamer, where the transmembrane domain is a
14-stranded antiparallel p-barrel, in which two
strands are contributed by each monomer. This
endotoxin causes disease by forming pores on the
infected cell membrane leading to cell lysis or to the
destruction of small molecule concentration gradients.

Recently, the structure of a Mycobacterial (Gram-
positive) outer membrane channel has been
determined at atomic resolution (MspA, Faller et al.
2004). This structure has not been considered in any
of the studies mentioned hereinafter, since Mycobac-
terial mycolate-rich outer membranes are considered
atypical. Actually, these are the thickest biological
membranes known to date, and present a decreased
fluidity toward the periplasmic side of the membrane
as opposed to the outer membrane of Gram-negative
bacteria (Liu et al. 1995).

In addition, it is well known that apart from
integral outer membrane proteins, Gram-negative
bacteria possess a number of lipoproteins covalently
attached to the outer membrane by means of N-
terminally attached lipids. Recent work (Juncker
et al. 2003, Brokx et al. 2004) provides evidence that
high-throughput experiments might improve the
refinement of the few existing predictive methods.

Concepts used for the Prediction of Transmem-
brane p-strands

The f-barrel outer membrane proteins share some
unique characteristic structural features that may be
used for predicting their structure. These are:
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(1) The transmembrane B-strands are mainly
amphipathic showing an alternation of hydrophobic
and polar residues. The hydrophobic residues
interact with the hydrophobic lipid chains, whereas
the polar residues face toward the barrel interior,
hence interacting with the aqueous environment of
the pore.

(2) The aromatic residues have a greater tendency
to be located in the interfaces with the polar heads of
the lipids, thus forming the so-called “aromatic belts”
around the perimeter of the barrel.

(3) Both the N-terminal and the C-terminal of the
proteins are located in the periplasmic space (inside
with respect to the outer membrane). In some cases,
the N-, and C-terminal tails of the protein may be
formed by more than 100 residues-long stretches.

(4) The segments connecting the transmembrane
strands that are located in the periplasmic space (in-
side loops) are generally shorter than those of the
extracellular space (outside loops). The periplasmic
loops have a length no longer than twelve residues,
whereas the extracellular loops may be significantly
longer, with lengths exceeding thirty residues. This
observation is possible due to the meander arrange-
ment observed in currently available structures. If
transmembrane B-barrels adopted a Greek-key
topology, longer loops on both sides of the barrel
would be present.

(5) The length of the transmembrane strands
varies according to the inclination of the strand with
respect to the lipid bilayer, and ranges between six
and twenty-two residues. However, in some cases
only a small portion of the strand is embedded in the
lipid bilayer, and the rest of it protrudes far away from
the membrane, to the extra-cellular space, forming
flexible hairpins.

(6) B-barrel outer membrane proteins show great
sequence variability in their amino acid sequences.
This, in general, is larger than that of the globular
proteins, and it is even larger in the extracellular loops,
which often function as antigenic epitopes.

(7) Adjacent strands are connected by a network
of hydrogen bonds, stabilizing the barrel.

Prediction Methods Based on Hydrophobicity
Analysis

The alternation of hydrophobic and polar residues in
the membrane spanning B-strands was used quite
early to assist prediction of B-barrel membrane
proteins. Vogel and Jahnig (Vogel & Jahnig 1986)
introduced the use of a sliding window that averages
the mean amphipathicity of every second residue
along the sequence. They used a window of seven
residues, centered around the residue i. Thus, the
mean amphipathicity H, for an amino acid i was de-
fined as:
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H(i) = [h(i-2) + h(i) + h(i+2) + h(i+4) ]/4

where h(k), is the hydrophobic index of amino
acid k according to the Eisenberg hydrophobicity scale
(Eisenberg et al. 1984). Vogel and Jahnig combined
their analyses with experimental evidence derived
from Raman spectroscopy, and they were able to
predict correctly the majority of the membrane span-
ning strands of OmpA, Porin and Maltoporin,
proteins with three-dimensional structures not avail-
able at that time. Jeanteur and colleagues (Jeanteur
et al. 1991) combined amphipathicity with sequence
alignments of members of the porin family, and
concluded that porins possess a 16-stranded B-
barrel. Schirmer and Cowan, (Schirmer & Cowan
1993) extended the approach of Vogel and Jahnig,
heuristically setting the hydrophobicity of residues
(i-2) and (i+4) to 1.6, if they were found to be
aromatic. Doing so, they tuned the method to
identify more accurately the aromatic belt of the
transmembrane strands, and they were able to verify
the correct location of the membrane strands for the
recently solved structures of Porin from Rhodobacter
capsulatus and E. coli, as well as that of Osmoporin
from E. coli. They also managed to predict the
membrane strands of the Maltoporin from E. coli, of
which a high-resolution structure was not available
at that time. Rauch and Moran (Rauch & Moran 1994),
applied a modified version of this algorithm. They
used a window of five residues, and subtracted from
the hydrophobicity of each residue a value
corresponding to the average hydropathy.
Afterwards, in each given window in the sequence,
they evaluated the total fraction of oscillations around
zero, which they called “fraction of period detected”.
This way, segments with a fraction close to 1 would
be probable transmembrane B-strands. Utilizing this
approach, they performed prediction of the
membrane spanning strands of the mitochondrial
outer membrane proteins VDAC and OM38 from
several eukaryotic species, which putatively possess
B-barrel structures. In their following study, they
extended their method, using similar hydropathy
profiles to predict both o-helical membrane segments
and transmembrane (3-strands (Rauch & Moran 1995).
Gromiha and Ponnuswamy (Gromiha &
Ponnuswamy 1993) derived the concept of surround-
ing hydrophobicity that does not depend only on the
amphipathic features of the B-strands. They

_constructed their scale and performed predictions on

several bacterial porins with unknown
three-dimensional structures.

The Beta Barrel Finder (BBF) program developed
by Zhai and Saier (Zhai & Saier 2002) combined

hydrophobicity, amphipathicity, predicted secondary
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structure and the presence of a signal peptide to
identify putative p-barrel outer membrane proteins
in prokaryotic genomes. The authors, by performing
analyses on the known structures of outer membrane
proteins, deduced a set of rules, indicating that
putative transmembrane B-strands should be recog-
nized as segments in which a peak in amphipathicity
should coincide with a peak in hydrophobicity and a
secondary structure prediction for a p-strand.
Furthermore, the presence of the signal peptide was
considered a strong indication of the protein’s local-
ization to the outer membrane, since all the outer
membrane proteins are known to possess such a
sequence, essential for their translocation through the
bacterial inner membrane. With the use of BBF, the
authors conducted a search in all the predicted ORFs
from the E. coli genome sequence, identifying 118
putative p-barrel outer membrane proteins. BBF was
one of the first methods applied to entire genomes
(see below), however it does not explicitly predict the
transmembrane topology, and the results were not
evaluated statistically in order to allow reliable
conclusions about the rate of false positive or false
negative predictions.

However, we should point out that predictive
methods based on hydrophobicity analysis and/or
secondary structure prediction have inherent limita-
tions. In their recent study of p-sheet folding in
membranes, Bishop and colleagues (Bishop et al. 2001)
show that sheet forming propensities routinely used
for secondary structure prediction are not correlated
to their experimental model, possibly reflecting the
different underlying folding mechanism between
B-sheets in water-soluble and integral membrane
proteins. Additionally, they show that hydrophobic-
ity scales based on non-polar core environments (i.e.
GES; Engelman et al. 1986, RW; Radzicka &
Wolfenden 1988) are perfectly correlated to the sheet
forming preferences, whereas scales based on more
polar environments (i.e. WW bilayer; Wimley & White
1996, WCW octanol; Wimley et al. 1996) have a poorer
correlation (Bishop et al. 2001). Such issues should be
seriously taken into account when developing empiri-
cal predictive methods for §-barrel integral membrane
proteins, since they may lead to inaccurate results.

Statistical Approaches

Soon, it became clear that features of these proteins
other than the hydropathy profiles should also
provide useful information for predicting the
transmembrane strands. Gromiha and associates
(Gromiha et al. 1997) derived a set of conformational
parameters and the associated rules that helped them
to predict the transmembrane strands of the porins
known at atomic resolution at that time. In this
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approach, the authors exploit the hydrophobic and
amphipathic character of the sequence, incorporating
additional propensities for the amino acids to be parts
of a transmembrane strand, as derived from analyses
of known structures. Furthermore, they introduced
specific rules, derived from expert knowledge of
known structures. Combining all these features they
achieved a (per-residue) accuracy prediction of 82%,
which was the highest achieved until that time.
Neuwald and colleagues (Neuwald et al. 1995)
applied a method based on the statistical formulation
of the Gibbs sampler in order to find and align specific
motifs characterizing a set of distantly related (non
homologous) bacterial outer membrane proteins. The
Gibbs sampler discovered such a repetitive motif,
which discriminates outer membrane proteins, with
an exceptionally high statistical significance. The
motif was present in the transmembrane strands of
the porins known at atomic resolution, and more
precisely in the strands that form the exterior side of
the trimeric pore, suggesting potential structural and
functional roles. Later, Manella and associates
(Mannella et al. 1996) used the same approach to
search for mitochondrial proteins, with a significant
match to the motif. They found that only the two
hypothesized a-barrel outer membrane mitochondrial
proteins, VDAC and Tom40, matched significantly to
the motif, a fact that has strengthened the belief that
these proteins are indeed transmembrane p-barrels.

Gnanasekaran and colleagues (Gnanasekaran et
al. 2000) proposed the use of structure based sequence
alignments in order to find specific patterns discrimi-
nating B-barrel outer membrane proteins. After
superposition of the structures of 5 different
bacterial porins, they deduced a multiple sequence
alignment that helped them to identify profiles from
structurally conserved regions (pSCRs), correspond-
ing to the 16 transmembrane strands occurring in
bacterial porins. Using these profiles, they report
significant hits to a database consisting of 82 a-
helical proteins, 68 B-barrel membrane proteins and
45 unidentified/non-membrane proteins, with a
false-positive rate of ~10-20%. However, the authors
did not propose either an effective way to combine
the individual motifs, which they have ranked in
order of discriminative power, or a strategy useful
for scanning large databases or genomes.

Wimley developed a scale-based method to
identify putative p-barrel outer membrane proteins
based on a statistical analysis of 15 known structures
(Wimley 2002). By aligning the structures with respect
to the hypothesized lipid bilayer plane, he derived
statistical frequencies of the residues belonging to a
transmembrane strand (pointing either to the barrel
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interior or to the exterior) and the residues belonging
to non-membrane parts (loops). By observing the fact,
that the repetitive structural motif in -barrel proteins
is the B-hairpin (two strands connected by a short
periplasmic turn), he developed an algorithm that
sums the individual amino acid propensities in a
given window (with a period of 2) and produces a
o-strand score, capable of identifying the majority of
transmembrane strands. Furthermore, by summing
the individual segment predictions and averaging for
the sequence length he produced a B-barrel score
useful for the final classification of the protein.
Applying this algorithm to the genome of E. coli, tak-
ing into consideration only the 200 top-scoring
proteins, Wimley concluded that this set includes the
majority of the known outer membrane proteins, and
a large number of putative or potential outer
membrane proteins. However, the method of Wimley,
like that of Zhai and Saier, does not report explicit
topology predictions, and was not validated statisti-
cally on an independent dataset. This means that
simple evaluation of the score produced by this
method does not suffice to declare a candidate
protein as outer membrane protein with a known
confidence, as proved later in a research conducted
by another group (see below).

Liu and associates (Liu et al. 2003a) took a differ-
ent approach in order to discriminate p-barrel outer
membrane proteins from all g-globular proteins. By
analysing the amino acid frequencies of residues
occurring in -strands of both globular and transmem-
brane B-barrel proteins of known structure, they
concluded that certain residues occur statistically
more frequently in one or the other group, and thus
can be used for discrimination. Considering the
predicted secondary structure performed by
PSI-PRED (and ignoring sequences with less than 4
predicted strands), they used a linear discriminant
function to classify an independent set of outer mem-
brane proteins and globular all-§ proteins, with a
success rate of 85.5% for outer membrane and 92.5%
for globular ones. In the classifier used in this study,
six amino acids were selected as having the greatest
discriminative power, these are Glycine (G) and
Asparagine (N), showing a preference for being part
of a transmembrane strand, and Valine (V), Isoleu-
cine (I), Lysine (K) and Cysteine (C) which show
preference to participate in strands of water soluble
proteins.

Our group (Bagos et al. 2004a) proposed a method
based on the Markov Chain Model, in order to
perform the task of discrimination of $-barrel outer
membrane proteins. The 1* order Markov Chain
Model states that the probability of observing a

25

particular residue depends on the occurrence of its
immediate predecessor (Durbin et al. 1998). Thus, by
obtaining the individual parameters of the model
corresponding to the 400 amino acid pairs, the model
was able to identify clearly the alternation of hydro-
phobic/polar residues, frequently occurring in B-
barrel proteins, and produce a log-odds score per
protein useful for discrimination. Using a set of
well-annotated outer membrane proteins and globu-
lar proteins with known structures, the authors
achieved a correct classification rate of 89.2% for outer
membrane proteins and 92.5% for globular ones, in a
jackknife test.

The BOMP method (Berven et al. 2004), uses a
combination of regular expression patterns, the
B-barrel score of Wimley, and a post processing step
to filter false positives based on the overall amino acid
composition. In particular, the first method applied
is based on the presence of a pattern characterizing
the most C-terminal B-strand of the barrel. This
pattern is:

{100} [*C] [YFWKLHVITMAD] [*C]
[YEWKLHVITMAD] [*C] [YFWKLHVITMAD]
[~C] [YFWKLHVITMAD] [*C] [FYW]

There is evidence that the occurrence of an aro-
matic amino acid, most often phenylalanine, in the
last position of the most C-terminal f-strand of the
barrel, is important for the assembly of the protein
and the insertion into the lipid bilayer (Struyve et al.
1991). This pattern is also flexible in allowing the
occurrence of amino acids YFWKLHVITMAD in the
remaining positions pointing towards the membrane,
and allowing all amino acids except Cysteine in the
positions pointing inwards the membrane. We should
mention here that Cysteine, is not present in any of
the transmembrane strands of p-barrel outer
membrane proteins known at atomic resolution, and
has a higher propensity for globular proteins as
previously reported (Liu et al. 2003a).

The second method applied is the B-barrel score
proposed by Wimley, with a threshold empirically ob-
tained from reference sets compiled by the authors.
Additionally, there is a filtering procedure necessary
to remove false positives. This is based on identify-
ing residues occurring more frequently in the
B-barrel outer membrane proteins than in the
globular proteins, as confirmed statistically by Prin-
cipal Components Analysis (PCA). This classifier con-
siders the relative abundances of two amino acids,
namely Asparagine (N) and Isoleucine (I) as they gave
the best separation between true and false positives
in the reference set. In agreement with previous work
(Liu et al. 2003a), Asparagine was detected to be more
abundant in B-barrel outer membrane proteins,
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whereas Isoleucine was more abundant in water
soluble proteins.

BOMP achieves an overall recall [i.e. true posi-
tives/(true positives + false negatives)] of 88% with
80% precision [i.e. true positives/(true positives +
false positives)], as measured in the well-annotated
outer membrane proteins of E. coli and Salmonella
typhimurium, found in SwissProt after removing
homologues with similarity above 40%. These corre-
spond to a rate of true positives around 88.1% and
true negatives 98.8%. In general, even though BOMP
does not utilize any new algorithmic techniques, it
performs very well with its main priority of avoiding
over predictions, since it has the lowest false positive
error rate reported so far.

Machine Learning Methods

As the number of crystallographically solved three-
dimensional structures continued to grow, it became
obvious that the issue of predicting p-barrel outer
membrane proteins was more complicated than the
simple detection of alternation of hydrophobic-polar
residues. Furthermore, during the ‘90s an explosion
in bioinformatics techniques occurred, where Machine
Learning approaches (such as the Artificial Neural
Networks, ANNs, and the Hidden Markov Models,
HMMs) were adopted to solve well-known biologi-
cal problems. Such problems were: prediction of
protein secondary structure (Qian & Sejnowski 1988,
Asai et al. 1993, Rost & Sander 1993), prediction of
B-helical transmembrane segments (Rost et al. 1995,
Sonnhammer et al. 1998, Pasquier & Hamodrakas
1999, Krogh et al. 2001), prediction of signal peptides
(Nielsen et al. 1997, Nielsen & Krogh 1998, Nielsen
et al. 1999), gene finding (Demeler & Zhou 1991,
Farber et al. 1992, Krogh et al. 1994), protein struc-
tural classification (Pasquier et al. 2001), subcellular
location prediction (Reinhardt & Hubbard 1998),
constructing profiles for sequence families (Eddy
1998) and multiple sequence alignment (Eddy 1995).
These methods are, in general, more capable of
finding the non-linear correlations of amino acids in
protein sequences, and perform better than simple sta-
tistical analyses and heuristic methods based on
physicochemical parameters and amino acids
composition. Furthermore, the mathematical founda-
tions of these methods are sounder, providing a safe
starting point for their use.

The first attempt to apply a machine learning
approach for predicting the topology of p-barrel outer
membrane proteins was conducted by Diederichs and
colleagues (Diederichs et al. 1998). They used an
Artificial Neural Network (Bishop 1995) for predict-
ing the relative position of the Ca.atom of each amino
acid residue of bacterial porins with respect to the
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lipid bilayer. To perform the training, they used seven
structures of bacterial porins known at atomic
resolution. They aligned the structures belonging to
the training set with their pores along the z-axis in
order to establish a relationship between the z-
coordinates of the Ca and the transmembrane
topology. This way, the outer membrane lies in the
xy-plane, and the network was trained to predict the
z-coordinate of Ca atoms, such that low values of
z-coordinate for a given residue indicate the probabil-
ity of a periplasmic turn, medium values that of a
transmembrane B-strand, and higher values an
extracellular loop. The network that was used had a
standard feed-forward architecture with one hidden
layer, trained by the back-propagation algorithm. The
authors reported a correlation coefficient (Baldi et al.
2000a) of 0.58 in the per-residue accuracy on the train-
ing set. Furthermore, they applied the method to
several outer membrane (non porins) proteins, for
which three-dimensional high-resolution structures
were not available, including OmpA, Omp32, FepA
and FhuA. However, the predictions performed for
these proteins were proved inaccurate, and this
became apparent when additional three-dimensional
structures of outer membrane proteins became
available.

As the number of crystallographically solved
structures continued to rise, one should expect that
more refined methods with a better performance
would be developed. Indeed, Jacoboni and associates
(Jacoboni et al. 2001) proposed the use of a similar
feed-forward Neural Network (B2TMPRED), trained
on the structures of eleven outer membrane f-barrel
proteins deposited in PDB until 2001. The main
novelties of this method were the use of evolutionary
information derived from multiple alignments made
by PSI-BLAST (Altschul et al. 1997) instead of using
single sequence information. A post-processing step
was introduced, involving a dynamic programming
algorithm (Jones et al. 1994, Fariselli et al. 2003) in
order to locate correctly the transmembrane strands
when a given output of the neural network is
obtained. Incorporation of Multiple Sequence
Alignments are reported to significantly improve the
accuracy of all kinds of secondary structure predic-
tion algorithms (Przybylski & Rost 2002). Addition-
ally, the dynamic programming step, when
implemented in accordance to the constraints
imposed by the known structures (such as the length
of the strands or that of the loops), is a very powerful
tool for obtaining a reasonable prediction using the
output of the neural network (Fariselli et al. 2003).
These two features, along with the fact that the
training set comprised eleven non homologous
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sequences, allowed the method to achieve a per
residue accuracy of 78% and a correlation coefficient
of 0.56 in the jackknife test, whereas for the self-
consistency the same measures were 89% and 0.77
respectively, much better than those obtained by the
neural network of Diederichs. Furthermore, the
authors claimed that their method had the ability to
predict the protein’s full topology, by counting the
lengths of the loops and assigning the smaller loops
to the periplasmic space. On these grounds, these
authors reported the number of correctly predicted
topologies (where all strands and loop orientation are
correctly predicted) to be 8 out of the 11 proteins of
the training set. A Neural Network with a similar
architecture, based solely on the amino acid sequence
was presented much later by the Gromiha group
(Gromiha et al. 2004). This method does not use
either evolutionary information or the dynamic
programming for the post-processing step, but instead
it applies a heuristic that tries to correct the outputs
of the network (i.e. to eliminate predicted strands with
two or three residues). The method was trained on
thirteen non-homologous B-barrel outer membrane
proteins, and the authors report a per residue
accuracy of 73% and a correlation coefficient of 0.46,
results clearly inferior compared to the method
proposed by Jacoboni, where evolutionary informa-
tion was used.

Very recently, a new method (TBBPred), which
combines Neural Networks and Support Vector
Machines was introduced (Natt et al. 2004), trained
on a larger non-redundant dataset of 16 f-barrel outer
membrane proteins. The Neural Network part of the
method is conceptually similar to that developed by
Jacoboni, using profiles derived from PSI-BLAST
alignments as the input. This NN (in the jackknife
testing procedure) correctly predicts 80.5% of the
residues, with a correlation coefficient of 0.63 and
correctly locates the number of the transmembrane
segments for 7 out of the 16 proteins. The SVM method
uses as input the sequence along with 32 features
derived from it, such as hydrophobicity etc. It achieves
a per residue accuracy of 78.5%, with a correlation
coefficient 0.55, whereas the number of proteins with
correctly located strands is 10 out of the 16 in the jack-
knife test. Combining the two methods, the authors
report a per residue accuracy of 81.8%, a correlation
coefficient of 0.64, whereas the total number of pro-
teins with correctly predicted transmembrane strands
equals to 9 out of the 16. This method is the only one
until now that exploits the power of the statistical
learning theory incorporated in the SVMs (Vapnik
1998). The observation that the combined prediction
increases the accuracy reflects the fact that SVMs are
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capable of capturing different sequence characteris-
tics essential for the prediction, better than the
Neural Networks do. Furthermore, the authors,
using information derived from the number and the
lengths of the predicted strands, report a 88.8% of
correct classification for outer membrane proteins and
92.3% for globular proteins.

The other major class of machine learning
techniques widely applied to bioinformatics problems
is the Hidden Markov Models (HMMs). The HMMs
are stochastic models, defining a regular grammar on
the amino acid sequence (Rabiner 1989, Durbin et al.
1998). Their mathematical formalism allows the
design of elegant algorithms for training these
models and perform the predictions (Baum 1972,
Durbin et al. 1998). The first method based on a HMM
to predict the transmembrane strands of B-barrel outer
membrane proteins was the HMM-B2TMR method
(Martelli et al. 2002). This method was trained on a
non-redundant set of 12 outer membrane proteins,
obtaining input from PSI-BLAST derived profiles.
This method introduced different states in the HMM
architecture corresponding to the structural charac-
teristics of the alternating hydrophobic-polar residues
in the transmembrane strands, the aromatic belt, the
periplasmic turns and the extracellular loops.
HMM-B2TMR was trained according to a modified
version of the Baum-Welch algorithm for HMMs with
labelled sequences (Krogh 1994), aiming to incorpo-
rate the profile as the input instead of the raw
sequence, whereas at the decoding stage the poste-
rior decoding method was used, along with an
additional post-processing step involving the same
dynamic programming algorithm used by Jacoboni
and colleagues. This method reached a rather high
per residue accuracy (83%) with a correlation
coefficient of 0.65 and the number of proteins with
correctly determined topology during the jackknife
testing procedure was 7 out of the 12. Furthermore,
this method was also capable of discriminating
between outer membrane proteins and water-soluble
proteins, with a correct classification rate of 84% for
outer membrane proteins and 90% for water-soluble
ones. The method was retrained on a larger dataset
of 15 non-homologous outer membrane proteins,
improving further the prediction accuracy (Fariselli
et al. 2003).

Later, a similar HMM-based method was intro-
duced by Liu and associates (Liu et al. 2003b) for
performing the same task. This method was trained
on a dataset of 11 outer membrane proteins accord-
ing to the standard Baum-Welch algorithm (Baum
1972) and accepts single sequence information as
input. The decoding was performed with the
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standard Viterbi algorithm for HMMs (Durbin et al.
1998), yielding a per segment accuracy of 97% (167
out of the 172 transmembrane strands in the training
set) and predicting correctly the topology of 7 out of
the 11 proteins, in the jackknife test. The authors do
not report the per residue accuracy and correlation
coefficient. Furthermore, this method, in contrast to
that of Martelli, was not capable of performing
discrimination between outer membrane proteins and
water-soluble proteins.

We have recently presented a HMM method
(PRED-TMBB;Bagos et al. 2004b, Bagos et al. 2004c)
quite similar in principle to the previously mentioned
HMM-based methods, but with some major practical
and theoretical improvements. Whereas the overall
architecture of the model was conceptually similar to
HMM-B2TMR and the method of Liu, and designed
in order to specifically fit the limitations imposed by
the known structures, the method was trained and
decoded following a completely different philosophy.
In contrast to the previous methods that relied for
training on the Baum-Welch algorithm that performs
Maximum Likelihood (ML) estimation, the PRED-
TMBB method was trained according to the
Conditional Maximum Likelihood (CML) criterion
(Krogh 1997) using a gradient-descent method (Krogh
& Riis 1999). Whereas the ML criterion maximizes the
probability of the sequences given the model, the CML
approach maximizes the probability of the correct
prediction given the sequences and the model. Hence,
even though using CML is computationally more
intensive than the Baum-Welch (ML) approach, the
predictive ability is expected to be better, given that
we have data with good quality of labelling. Toward
this end, the authors performed meticulous manual
sequence labelling (the assignment of each amino acid
in one of the three classes to be predicted, transmem-
brane strand, periplasmic turn and extracellular loop),
by observing directly the three-dimensional structures
and not relying on the annotation of the PDB entries,
as was done by all previous investigators. Following
this approach, we were able to precisely locate the
aromatic belt of the barrel, the residues facing the
barrel interior and exterior, and more importantly not
to include for training as transmembrane those parts
of the strands protruding far away from the lipid
bilayer to the extracellular space. For the decoding
step, we did not rely on the Viterbi algorithm,
routinely used for HMMs. Along these lines, we
introduced for the first time, for outer membrane
proteins, the N-Best algorithm (Krogh 1997), which
is a heuristic that seeks to find the most probable
labelling of the sequence and not just the most
probable path of states, as the Viterbi algorithm does.
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We, optionally, also used posterior decoding, with a
dynamic programming algorithm for the post-
processing step, which differed in some aspects from
that used by B2ZTMPRED and HMM-B2TMR. With
these approaches, PRED-TMBB reached in the
jackknife test a per-residue accuracy of 84.2% and a
correlation coefficient of 0.72. Moreover, the method
correctly predicted the topologies for 10 out of the 14
proteins in the training set (in the jackknife test),
showing that PRED-TMBB locates correctly the trans-
membrane B-barrels better than any other method,
even if it is based on single sequence information.
Additionally, the method also discriminates outer
membrane proteins from globular, water-soluble ones,
reaching a correct rate of 89% for both classes. The
method has recently been retrained in order to include
some recently solved three-dimensional structures.
This way, the algorithm reached, in the jackknife test,
an accuracy of 87.5% and a correlation coefficient of
0.74, with 12 out of the 16 proteins having their
topologies correctly predicted (Bagos et al. 2004c).
The latest addition to the family of HMM-based
predictors is the ProfTMB method introduced by the
Rost research group (Bigelow et al. 2004). This method
also uses input derived from PSI-BLAST profiles and
training is obtained by a modified version of the
Baum-Welch algorithm and decoding using the stan-
dard Viterbi algorithm. The model architecture is once
again similar to that of the previously mentioned
methods, and for the training set 8 non-homologous
proteins from PDB were used. The main novelty of
the method is the use of different model parameters
(emission and transition probabilities) to model the
strands with direction from the periplasmic space to
the extracellular matrix (Up strands), and different
ones for the strands of the opposite direction (Down
strands). Furthermore, it uses different states to model
explicitly the different structural types of periplasmic
loops (turns, hairpins etc). ProfTMB performs equally
well compared to the previously mentioned HMM-
based methods in terms of per-residue accuracy (83%)
and correlation coefficient (0.70). However, the
author’s choice to use a different (log-odds) score for
discrimination purposes implicates the discrimination
capability of the method. In particular, the authors
report that a log-odds score of 12 should be used as a
cut-off for the discrimination; with this as a thresh-
old, the method achieves 100% positive predictive
value (called accuracy in the paper, i.e. does not
predict a single false positive) but the percentage of
correctly predicted OMPs is 40% (called coverage in
the paper). It is obvious that the method, using a
cutoff score of 12, is very specific (does not predict
OMPs falsely) but not quite sensitive (misses a lot of
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true positives), an issue raising implications discussed
in the following sections. The authors also report that
the same method with a threshold of 3 achieves 50%
coverage and 80% accuracy, whereas for a threshold
of 0 it reaches an equal accuracy and coverage of 55%.

Alternative Formulations
Subcellular Location Prediction: Another way to
formulate the problem of outer membrane protein
prediction is to address it in the context of subcellu-
lar location prediction. The PSORT-B algorithm was
designed specifically to predict the subcellular
location of proteins belonging to Gram-negative
bacteria (Gardy et al. 2003). In order to achieve this,
the algorithm combines several independent
modules, i.e. prediction of transmembrane B-helices,
prediction of a signal peptide etc. One of the
modules used in this system, the “OMP motif”, was
built by searching for frequent motifs found in outer
membrane proteins. A total number of 279 motifs were
found and a query sequence is scanned for the
presence of 3 or more such motifs, in order to be
classified as an outer membrane protein. The indi-
vidual specificity of this module was found to be
100%, whereas the sensitivity was 23.6%. However,
combining the individual modules with the use of a
Bayesian Network classifier (Cowell et al. 1999), the
authors finally report 98.8% specificity and 90.3%
sensitivity for the classification of outer membrane
proteins. Some authors of the same group extended
their approach by data-mining frequent sub-
sequences of outer membrane proteins (She et al.
2003), and used them to build a classifier based on
Support Vector Machines (SVM; Vapnik 1998). Since
the primary objective (see below) was mainly to make
good predictions of outer membrane proteins, they
report the precision (positive predictive value — the
fraction of correctly predicted OMPs among the
totally predicted as OMPs) and the recall (sensitivity
—the fraction of correctly predicted OMPs among the
actually true OMPs) to be 98% and 81%, respectively.
The main disadvantage of the PSORT-B algorithm is
that it cannot discriminate the B-barrel outer mem-
brane proteins from outer membrane lipoproteins.
Secondary Structure Prediction: As mentioned in
previous sections, secondary structure prediction
methods have been used in combination with hydro-
phobicity analyses (Zhai & Saier 2002) or coupled with
discriminant analysis utilizing differences in the
distribution of specific amino acids (Liu et al. 2003a).
On the other hand, it has been clearly stated that the
transmembrane B-strands of outer membrane proteins
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differ significantly in their physico-chemical proper-
ties and amino-acid composition, compared to the
B-strands occurring in the water-soluble proteins
(Schulz 2000, Schulz 2002, Schulz 2003, Wimley 2003).

However, molecular biologists repeatedly use
general-purpose secondary structure algorithms, such
as PSI-PRED (McGuffin et al. 2000), PHD (Rost 1996,
Rost & Liu 2003) or JPRED (Cuff et al. 1998),
combined with hydrophobicity analyses to manually
locate the putative membrane-spanning strands of
newly sequenced outer membrane proteins. This
strategy has been used for years and seems to work,
judging from the relevant publications. Using such
approaches, along with sequence alignments of outer
membrane proteins of known structures, Rodriguez-
Maranon and colleagues (Rodriguez-Maranon et al.
2002) concluded that the Major Outer Membrane
Protein (MOMP) of Chlamydia is a porin with 16
transmembrane strands. Paquet and associates
(Paquet et al.2000) combined several different
algorithms to perform predictions on the Brucela
abortus Omp2a and Omp2b porins. Along these lines,
Zhang and colleagues (Zhang et al. 2000) performed
prediction on the Cambylobacter jejuni MOMP.
Genome Scale Analysis
As we have noted earlier, predicting the transmem-
brane strands and outer membrane protein
discrimination in large datasets are two entirely dif-
ferent problems. Thus, when it comes to genome
analysis there are some important issues that have to
be carefully taken into account.

In table 1, we cite all the available prediction
algorithms, listing the corresponding capabilities
regarding transmembrane strand prediction and
discrimination power. Some algorithms predict both
transmembrane strands and discriminate B-barrel
proteins, while others perform only one of the
aforementioned tasks. Moreover, the performance of
each algorithm is highly variable, since each one of
them is oriented toward a different end. Thus, some
algorithms are more specific i.e. do not misclassify
outer membrane proteins, with the disadvantage of
giving a lot of false positive results, whereas others
are more sensitive i.e. they do not produce many false
positives, with the cost of misclassifying some true
B-barrels.

The algorithms’ sensitivity and specificity become
important in genome analysis due to the fact that
B-barrel outer membrane proteins constitute only a
small fraction (<4%) of the genome of Gram-negative
bacteria (Casadio et al. 2003a, Berven et al. 2004,
Bigelow et al. 2004). Given this, even an algorithm
with a 5% error classification rate will produce a large
number of false positives. The first methods applied
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Table 1. Methods for discriminating/predicting B-barrel integral membrane proteins.
The available predictors, used for discriminating and/or predicting the transmembrane strands of B-barrel integral

membrane proteins.
(1) HMM-B2TMR, is available only as a commercial demo.

Method Reference ™ TM Strands  Discri- URL
Strands + Orientation mination
B2TMPRED Jacoboni et al.2001 X - - http:/ /gpcr.biocomp.unibo.it/cgi
/ predictors/outer/pred outercgi.cgi
BOMP Berven et al. 2004 - - X http:/ /www .bioinfo.no/tools/bomp
HMM-B2TMR (Martelli et al. 2002) X X - http:/ / gpcr.biocomp.unibo.it/biodec/ (1)
2 @
é MCMBB Bagos et al. 2004a - - X http:/ /bioinformatics.biol.uoa.gr/ mcmbb
g_ OM_Topopredict Diederichs et al. 1998  x X - http:/ /strucbio.biologie.uni-konstanz.de
) (2) /~kay/om_topo_predict2.html (2)
<
-‘g PRED-TMBB Bagos et al. 2004b, X X X http:/ /bioinformatics.biol.uoa.gr
g Bagos et al. 2004c /PRED-TMBB/
@ | ProfTMB Bigelow et al. 2004 X X X http:/ / cubic.bioc.columbia.edu/services
5 /proftmb/
PSORT-B Gardy et al. 2003 - - X http:/ / www.psort.org
TBBpred Natt et al. 2004 X - X http:/ /www.imtech.res.in/raghava/
tbbpred/
TM-BETA Gromiha et al. 2004 X - - http:/ / psfs.cbrc.jp/tmbeta-net/
Wimley Wimley 2002 - - X Under construction
=1
E PHD Rost & Liu 2003 - - - http:/ / www.predictprotein.org/
7
g8
T | PSI-PRED McGuffin et al. 2000 - - - http:/ /bioinf.cs.ucl.ac.uk/psipred/
K
LK &

to whole genomes with the aim of finding p-barrel
outer membrane proteins on a genomic scale were
those of Wimley (Wimley 2002) and the BBF program
(Zhai & Saier 2002). As we stated earlier, both
methods were not statistically validated in advance,
but the proteins that are more likely to be -barrels
were reported instead. Wimley, reports 200 potential
B-barrels, while the BBF method predicts 118 B-
barrels in the genome of E. coli. Both methods classi-
fied correctly the verified &-barrel proteins of E. coli,
but the question whether the remaining of the
predicted proteins are true B-barrels or false positives
remains unanswered. The PSORT-B algorithm (Gardy
et al. 2003), when applied to 77 genomes of
Gram-negative bacteria (including E. coli), predicted
255 outer membrane proteins, without distinguish-
ing however §-barrels from lipoproteins.

The first method, based on statistically validated
tools, was the Hunter suite of programs (Casadio et
al. 2003a). Hunter combines the NN and the HMM
predictor previously developed by the same group
(Jacoboni et al. 2001, Martelli et al. 2002) coupled with
two NN predictors, one for a-helical membrane
proteins and another for signal peptides. This method
makes the useful assumption that the B-barrel outer
membrane proteins possess a signal peptide for their
translocation across the inner membrane, applying a
pre-processing filter to exclude a-helical transmem-
brane proteins. By this approach, Hunter minimizes
the candidates presented to the B-barrel predictor,
thus minimizing the probability of having false
positives. The method finally clusters the genome into
three categories: p-barrel membrane proteins, a-
helical membrane proteins and soluble proteins, with



Prediction of B-barrel Outer Membrane Proteins

a correct classification rate of 95.6% for the three
classes and 84% for B-barrels, as tested on the
well-annotated subset of E. coli proteins. The authors
utilized Hunter to perform predictions on 9 Gram-
negative bacterial genomes, and concluded that the
B-barrel content ranges from 1.5% to 2.4%, with the
E. coli genome having 78 B-barrels (1.5% of the total
genome). In conclusion, Hunter seems to be the more
sophisticated method for predicting the p-barrel
proteins in entire genomes, yet it misses at least 16%
of the true B-barrels. Furthermore, it is not publicly
available.

The ProfTMB method was also used for scanning
72 genomes of Gram-negative bacteria (Bigelow et al.
2004). As we already mentioned, profTMB is rather
specific, hence the total number of B-barrels that it
reports is relatively small, and as expected it predicts
70 B-barrel outer membrane proteins in E. coli, and
164 novel outer membrane proteins (with no known
homologs) in all the genomes analyzed. Finally, the
BOMP program (Berven et al. 2004) predicted the
total genome content of 10 Gram-negative bacteria to
range between 1.8% and 3%. Particularly, the E. coli
genome was predicted to encode for 103 &-barrel
membrane proteins. Since all predictions point to
similar estimates, these seem to be quite accurate and
close to reality. However, the issue of algorithms’
specificity and sensitivity has to be addressed
thoroughly in the near future. Improvement of the
methods is necessary for predicting more reliably the
B-barrel genome content of Gram-negative bacteria.

Eukaryotic B-barrel Membrane Proteins

As we noted earlier in the text, eukaryotic organisms
presumably possess a fraction of §-barrel membrane
proteins, located in the outer membrane of the
semi-autonomous organelles such as mitochondria
and chloroplasts, a fact explained by the theory of
endosymbiosis. However, there is not available up to
now a three-dimensional structure, of any of these
proteins. As we already mentioned, early attempts
were made in order to predict the putative transmem-
brane strands of mitochondrial porins using hydro-
phobicity analyses (Rauch & Moran 1994), and the
Gibbs sampler (Mannella et al. 1996). Currently, some
of the machine learning approaches discussed here,
were shown capable of predicting plausible topolo-
gies for the mitochondrial VDAC and Tom40 (Liu
et al. 2003b). Furthermore, Casadio and coworkers,
using their NN-based predictor BZTMPRED, and per-
forming a threading approach, were able to provide
a three-dimensional model of the VDAC, using as
template a bacterial porin (Casadio et al. 2002).
A similar approach was followed to obtain a three-
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dimensional model of the voltage-independent and
cation- selective DmPorin2 of the fruit fly Drosophila
melanogaster (Aiello et al. 2004).

Recently, a semi-automatic strategy was proposed
for finding the B-barrel outer membrane proteins of
plant’s chloroplasts (Schleiff et al. 2003). The method,
named by the authors as BITS, combined the g-barrel
score (BBS) of Wimley (Wimley 2002), isoelectric point
calculations, the TargetP system (Emanuelsson et al.
2000) for predicting N-terminal signal sequences, and
manual annotations. With this method, the authors
collected a large set of putative chloroplast f-barrel
outer membrane proteins of Arabidopsis thaliana, and
finally proposed reliable topological models for four
of them that have never been implicated with chloro-
plast outer membrane localization. This analysis
shows that the proposed evolutionary relation
between the semi-autonomous organelles (chloro-
plasts and mitochondria) and bacterial species may
also imply common strategies for analyzing their
outer membrane content.

Interestingly, there were early experimental
sources of evidence suggesting the existence of an
anion non-specific porin placed in the peroxisomal
membranes (Reumann et al.1995). These proteins
differ from the other previously characterized porins
in the outer membrane of mitochondria or chloro-
plasts. They show a relatively small single-channel
conductance and are strongly anion selective, thus,
they were proposed to be essential for the passage of
small metabolites through the membrane (Reumann
etal. 1996). Although such porin-like activity has been
observed in several plant peroxisomal membranes
(Reumann et al. 1997), there is currently no evidence
that this protein adopts a a-barrel structure. There is
a hypothesis that the peroxisomes do not form de
novo but grow and divide like mitochondria and
chloroplasts, even though they do not possess a ge-
nome of their own. These speculations have lead to
the development of an endosymbiotic theory for per-
oxisomes as well (Borst 1989). Further studies, both
utilizing biochemical and bioinformatical approaches,
are needed in order to investigate the properties of
the putative porin-like proteins of the peroxisomal
membrane and elucidate their structural characteris-
tics and possible evolutionary relationships.

However, in the luck of any experimental data at
atomic resolution, only weak hypotheses can be
drown about the structure of eukaryotic p-barrel
integral membrane proteins as predicted with
methods tailored on their bacterial counterparts. Such
methods should be revisited as soon as the first
high-resolution three-dimensional structures become
available.
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Figure 2. Graphical representation of the different predictions obtained on the translocator B-barrel domain of NalP from
N. meningitidis (Oomen et al. 2004). The transmembrane §-strands obtained from PDB_TM (Tusnady et al. 2004) and the
amphipathicity plot along the sequence, using the method of Vogel and Jahnig (Vogel & Jahnig 1986), are also illustrated.
For the names of the different methods, see Table 1. We observe that most of the peaks in the plot correspond to TM
strands, but also to a false positive strand, near residue 220, which is predicted by all methods except ProfTMB.

Evaluation of the Performance of Individual
Methods

In order to evaluate the performance of the different
methods presented so far, we have compiled two
datasets. The first dataset consists of four proteins
with recently solved three-dimensional structures that
were not included (neither these nor a close homo-
logue) in the training sets of the methods presented

here. This dataset consists of the Translocator Domain
Of Autotransporter Nalp from Neisseria meningitidis
(PDB ID: 1TUYN; Oomen et al. 2004), the Neisserial
Surface Protein A (Nspa) of N. meningitidis (PDB ID:
1P4T; Vandeputte-Rutten et al. 2003), the Outer
Membrane Enzyme Pagp of E. coli (PDB ID: 1IMM4;
Hwang et al. 2002) and the Outer Membrane Cobal-
amin Transporter (Btub) from E. coli (PDB ID: INQE;

Table 2. Results of the blind test on transmembrane P-barrel topology prediction.

Overall measures of accuracy of the different web-predictors, tested on
the set of four newly crystallographically solved structures. The
comparison is made against the observed transmembrane strands
deposited in PDB_TM (Tusnady et al. 2004).

Q,: Percentage of correctly predicted residues.

C,: Matthews Correlation Coefficient.

S(ﬁ)V: Segment Overlap measure.

Correctly Predicted Topologies: Proteins with correctly predicted strand
localization and loop orientation.

Correct Barrel Size: Proteins with correctly predicted number of
transmembrane strands, allowing the inclusion of one shifted strand
prediction per protein.

Qb Cb SOV Correctly Predicted
Correct Size
Barrel
B2TMPRED 0.705 0.449 0.727 1 2
HMM-B2TMR 0.802 0.643 0.884 3 3
PRED-TMBB 0.843 0.689 0.91 2 4
ProfTMB 0.766 0.569 0.837 3 3
TBBPred 0.754 0.509 0.69 0 0
TM-BETA 0.669 0.363 0.681 0 0
PSI-PRED 0.727 0.486 0.678 0 0
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Chimento et al. 2003). On these proteins we performed
a blind test, predicting their transmembrane -
strands, using the following methods: PRED-TMBB,
B2TMPRED, HMM-B2TMR, TM-BETA, ProfTMB,
TBBPred and PSI-PRED. Detailed results for the
N. meningitidis Translocator Domain Of
Autotransporter Nalp are illusrated in figure 2.

For the transmembrane strand predictions, we
evaluated the methods using the well-known SOV
(measure of the segment’s overlap), which is consid-
ered to be the most reliable measure for evaluating
the performance of secondary structure prediction
methods (Zemla et al. 1999). We also used the total
number of correctly predicted topologies, i.e. when
both the strands’ localization and the loops’ orienta-
tion have been predicted correctly, and the correctly
predicted barrel size i.e. when the correct number of
strands has been predicted, with no more than one
mismatch (shifted prediction). It should be noted that
only the HMM-based predictors report the full
topology, hence for the NN-based predictors we count
as correctly predicted topology a prediction where all
the strands are correctly located. As measures of the
per residue accuracy (Baldi et al. 2000a), we used both
the total fraction of the correctly predicted residues
(Qp) in a two-state model (transmembrane versus
non-transmembrane) and the well known Matthews
Correlation Coefficient (C,). The results of this test
are summarized in table 2. The comparison is
performed against the transmembrane strands that
are reported in the PDB_TM database entries
(Tusnady et al. 2004). From table 2, it is obvious that
HMM-based methods (HMM-B2TMR, PRED-TMBB
and ProfTMB) perform better than the NN- and SVM-
based methods (TM-BETA, TBBPred and
B2TMPRED). Furthermore, the refined all-purpose
secondary structure prediction methods such as
PSI-PRED perform comparably to the B-barrel
specific NN-based methods, even though the former
sometimes predict strands with non-realistic lengths.

The superiority of the PRED-TMBB method based
on the measures of per-residue and per-segment
accuracy is justified, since PRED-TMBB is the only
method trained on the transmembrane part of the
strands, while all the other methods are trained
according to the PDB annotations. Thus, it is trained
to find only the transmembrane part of the strand and
not the whole strands, which in some cases protrude
far away to the extracellular matrix. ProfTMB and
HMM-B2TMR provide better predictions for the
overall topology of the proteins (3 out of 4 cases).
However, PRED-TMBB predicts the correct barrel size
better (4 out of 4), even though it uses single sequence
information.
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When it comes to proteins with newly solved
structures, a strong bias may arise mainly for two
reasons. Firstly, the presence of a protein that declines
from those used for training in some of the structural
features (e.g. a protein with a very small shear
number corresponding to sheets unusually longer),
and secondly, the presence of a protein with a strong
bias in its amino acid composition. It seems that this
is not the case here; nevertheless, we will try to
address this issue later (see Historical Prospective
Study section).

The second independent test set consists of 68
recently characterized outer membrane proteins,
which were collected after an extensive literature
search. This set consists of sequences with low
sequence similarity to those used to train the differ-
ent methods, and is used to test the ability of the meth-
ods to correctly discriminate novel outer membrane
proteins encoded in the genomes of Gram-negative
bacteria. These proteins were identified by perform-
ing searches in articles indexed in PUBMED (for the
last 2-3 years period), containing keywords such as
“novel porin”, “novel outer membrane protein”,
“porin activity”, “cloning”, “characterisation” of
“outer membrane protein” or “porin”. By reading the
relevant abstracts or papers, we were able to retrieve
the corresponding sequences in public databases such
as GENBANK or TREMBL. Sequence fragments and
clear cases of outer membrane lipoproteins were
discarded. Using this reference set, we tested the
following methods: PRED-TMBB, ProfTMB (with a
cutoff of 10), BOMP, MCMBB, PSORT-B and the
method of Wimley.

Table 3. Assessment of different predictors in the task of
B-barrel integral outer membrane protein discrimination.

Evaluation of the different available methods used for
discrimination of the B-barrel integral outer membrane
proteins. BLAST results, correspond to a significant hit, to
the database of annotated B-barrel outer membrane
proteins used in Berven et al. 2004.

Method Correctly Predicted OMPs (%)
BOMP 41 (65.1%)
MCMBB 49 (77.8%)
PRED-TMBB 56 (88.9%)
ProfTMB 43 (68.3%)
PSORT-B 22 (34.9%)
Wimley 46 (73.0%)
BLAST 13 (20.6%)
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From the initial set of 68 protein sequences, we
removed after careful manual inspection 5 sequences
that clearly did not correspond to B-barrel membrane
proteins. For example, the SwissProt/ TrEMBL
(Boeckmann et al. 2003) entry with Accession
Number (AC) P72122, which is incorrectly annotated
as “Outer membrane protein C”, is predicted to
contain a-helical transmembrane segments. The
former annotation is valid for the sequence entry with
AC P27121. After ‘cleaning’ the data-set, we ended
up with a set of 63 putative outer membrane p-barrel
proteins. For the evaluation of the different methods,
we report the total number and the fraction of the
correctly predicted outer membrane proteins, and the
results are listed in table 3. Keeping in mind that even
with the reduction of the set some false positives may
still be present, we can draw some general conclusions
as follows. PSORT-B is the most conservative in its
predictions, since it detects a significant lower
fraction of B-barrels. On the other hand, PRED-TMBB
seems to predict the largest number of B-barrels, but
it is known that when this method is applied without
the filtering steps mentioned earlier, it is prone to
over-prediction. The rest of the methods seem to per-
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form comparably, but they do not predict the same
set of proteins as B-barrels.

In order to perform an efficient and more
accurate analysis, there is a need for well-annotated
sets of positive examples (B-barrel proteins) and
negative examples (globular proteins). However, at
this point the task of finding well-annotated sets of
both B-barrel proteins and globular proteins that did
not participate (neither them nor a close homologue)
in the sets used for training any of the above-
mentioned algorithms is a difficult task, and out of
the scope of the current work. Thus, this blind test is
appropriate only to uncover general trends in the
performance of the algorithms used for discrimina-
tion. More thorough statistical analysis may be
feasible in the near future when large datasets will be
annotated using both algorithmic and biochemical
methods.

Future Directions

We have seen so far that the increase in the number
of available structures is followed by an increase in
the predictive accuracy of the methods. As the
number of the available crystallographically solved

Table 4. The non-redundant data set used in the “historical prospective” study.

This non-redundant data set consists of 18 outer membrane proteins. Proteins are ranked
by the year of publication of the corresponding high-resolution three-dimensional structure.

Protein name Number of PDBID Year of Organism

B-strands publication
Porin 16 2POR 1992 Rhodobacter capsulatus
Porin 16 1PRN 1994 Rhodobacter blasticus
OmpF 16 20MF 1995 Escherichia coli
Sucrose porin 18 1A0S 1997 Salmonella typhimurium
Maltoporin 18 2MPR 1997 Salmonella typhimurium
FhuA 22 2FCP 1998 Escherichia coli
FepA 22 1FEP 1999 Escherichia coli
OmpLA 12 1QD5 1999 Escherichia coli
OmpX 8 1QJ8 1999 Escherichia coli
OmpA 8 1QJP 1999 Escherichia coli
Omp32 16 1.00E+54 2000 Comamonas Acidovorans
OmpT 10 1178 2001 Escherichia coli
FecA 22 1IKMO 2001 Escherichia coli
OpcA 10 1K24 2002 Neisseria meningitidis
Pagp 8 IMM4 2002 Escherichia coli
BtuB 22 INQE 2003 Escherichia coli
NspA 8 1P4T 2003 Neisseria meningitidis
Nalp 12 1IUYN 2004 Neisseria meningitidis
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structures continues to increase, we will have even
more data that could be used for training the predic-
tors. Since p-barrel membrane proteins share little
sequence similarity, solving the structure of a new
porin with low sequence similarity with the
sequences of porins of already known structure might
provide some useful information for the improvement
of existing predictive algorithms. On the other hand,
solving the structure of a protein belonging to a
family of B-barrel outer membrane proteins with no
structure currently available would prove to be even
more helpful towards predicting the structure of p-
barrels. Examples of such cases, have been observed
in the past, considering the recently solved structures
of NalP (Oomen et al. 2004), NspA (Vandeputte-
Rutten et al. 2003), PagP (Hwang et al. 2002) and BtuB
(Chimento et al. 2003).

With the large number of completed or ongoing
genome sequencing projects and the large effort spent
on structural genomics projects, we have reasons to
believe that the number of the available structures will
continue to increase in the near future. We could
speculate that this increase will follow a rate similar
to that of water-soluble proteins two decades ago
(Rees 2003). This will also be facilitated by the
advances in the techniques used for cloning, express-
ing and crystallizing integral membrane proteins
(Bannwarth & Schulz 2003). The increase in the
number of available structures will have a direct
impact on the quality of algorithms used for predic-

35

tion, as different classes of algorithms require datasets
of different sizes in order to be trained effectively. For
example, a Neural Network method trained on 3
structures would be clearly over-fitted since it requires
the adjustment of approximately 600 free parameters
while the training set will only have about 1200 amino
acid residues.

For the sake of argument, we have conducted a
“historical prospective” study on the prediction
performance on B-barrel membrane proteins. We
ranked the structures of the 18 non-redundant
protein sequences, according to the year of publica-
tion, as shown in table 4. Afterwards, we created 8
virtual datasets corresponding to years 1997 to 2004,
including in each dataset all the structures published
up to that year. Thus, 5 structures are included in the
set for 1997, 6 structures for 1998 and continuing in
the same manner, we finally obtained the complete
set of 18 representative sequences for the year 2004.
For each such set, we trained a HMM with a similar
architecture with PRED-TMBB (Bagos et al. 2004b),
and we evaluated the performance on the jacknife test,
i.e. removing a protein from the training set, training
the model with the remaining proteins and perform-
ing the test on the protein removed. Given this, and
the fact that the sequences do not show any signifi-
cant similarity (no more than 30% identities in a
BLAST alignment; Altschul et al. 1997), the results of
the study were, approximately, what would have been
observed if such an algorithm was applied at that

s Correlation Coefficient
A SOV

® Q (Correctly Predicted Residues) (r=0.98, p<0.0001)

(r=0.98, p<0.0001)
(r=0.97, p<0.0001)

5 10

15 _ 20

Number of Proteins
Figure 3. Plot of the measures of predictive performance against the number of sequences used for training in the “historical prospective”
study. Squares: Mathews Correlation Coefficient. Triangles: Segment Overlap. Circles: Correctly predicted residues.
r: Pearson’s linear correlation coefficient. p: p-value of the regression line.
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particular time.

Figure 3 illustrates the results of this historical pro-
spective study, namely the correlation coefficient (Cy),
the correctly predicted residues (Q,) and the
segment overlap (SOV) against the structures used for
training. By fitting a linear regression line, we
observe that the accuracy of the prediction increases
constantly with the increase in the number of
structures used for training. We can safely assume that
the same will continue to happen in the near future,
as the number of available structures continues to grow
until a plateau is reached.

One of the most effective ways to increase the
prediction accuracy is to combine individual predic-
tors. This strategy is well documented in the case of
a-helical membrane proteins, where the so-called
“Consensus Prediction” methods have been proved
superior to the individual predictors. Such approaches
have already been proposed by several research
groups (Promponas et al. 1999, Nilsson et al. 2000,
Taylor et al. 2003, Xia et al. 2004). Another combined
approach, slightly different from the Consensus
Prediction, is the use of ENSEMBLE learning
techniques (Perrone & Cooper 1993, Sollich & Krogh
1996). This kind of machine learning methods are
suitable for combining individual predictors, taking
advantage of the points that the predictors disagree,
instead of looking at where the predictors agree, in
this way maximizing the information content of the
individual predictors. Such an ENSEMBLE system has
been used by Martelli and colleagues for the predic-
tion of a-helical membrane proteins, combining the
predictions of two different HMMs and a NN method
(Martelli et al. 2003). Considering the fact that we
already possess a variety of algorithms for predicting
the transmembrane strands of B-barrel outer
membrane proteins, it is tempting to speculate that by
combining those individual predictors effectively, we
might be able to improve further the prediction
accuracy.

Finally, as already discussed, given the increased
number of available structures, we may face the need
to develop novel, entirely different algorithms or
models in order to improve the prediction perfor-
mance. The most obvious way to do this is to exploit
structural features of the B-barrels that have not been
used before in prediction methods. One such
important feature is the coupling of the adjacent B-
strands of the barrel, forming hydrogen bonds that
stabilize the whole structure. This issue has been
addressed in the past in the case of f-sheet containing
soluble proteins. Krogh and Riis used a Neural
Network method utilizing two-independently
moving- sliding windows along the sequence, predict-
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ing each time if the two central amino acids form a
hydrogen bond or not (Krogh & Riis 1996). With this
method, they managed not only to improve the
prediction accuracy for B-strands by 1%, but also to
predict the coupling of the predicted strands, making
a step towards the prediction of tertiary structure from
sequence alone. Another, probably more sophisticated
use of NNs was proposed by Baldi and colleagues
(Baldi et al. 2000b), utilizing the concept of Bidirec-
tional Recurrent Neural Networks (BRNNs). BRNNs
have also been used for protein secondary structure
prediction with excellent results (Pollastri et al. 2002),
and their application for matching the B-sheet
partners yielded an accuracy of approximately 84%
for soluble proteins.

Perhaps the most advanced computational
method that could be used in the future for predicting
both the location of the transmembrane strands and
their connectivity is that of the Stochastic Context Free
Grammars (SCFGs). SCFGs are commonly used in
molecular biology for predicting the secondary
structure of tRNA (Sakakibara et al. 1994, Lefebvre
1995, Knudsen & Hein 1999, Knudsen & Hein 2003)
and rRNA (Brown 2000), where base pairing
introduces long range interactions that may not be
captured by other machine learning approaches. In the
field of protein modelling, SCFGs were first applied
by Mamitsuka and Abe (Mamitsuka & Abe 1994), for
predicting the location and the connectivity of the
B-strands in water-soluble proteins with considerable
success. The main disadvantage of SCFGs, compared
to the already mentioned NNs and HMMs, is the
computational complexity of the algorithms used for
training and parsing (testing) these models. However,
since the available computational power is increasing
rapidly, it would be no surprise to find in the near
future reliable predictors for the p-barrel outer
membrane proteins based on SCFGs.

Conclusions

We formulated the problem of predicting the
transmembrane fB-barrel proteins and presented the
general framework currently in use for the topology
prediction of f-barrel outer membrane proteins.
Structural characteristics of B-barrel outer membrane
proteins were highlighted, emphasizing on those
features that have been proved useful in the
implementation of prediction algorithms. We
discussed historical aspects of the evolution of
different methods, in terms of both the available data
and the algorithms used for prediction. We also
presented the issue of discrimination of outer
membrane proteins encoded in complete genomes,
along with the prediction of their topology, and we
presented all the available predictors used for both
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purposes. After a comparison of the different
methods we concluded that the HMM-based
predictors (HMM-B2TMR, Prof TMB and PRED-
TMBB) perform significantly better than the NN- and
SVM-based methods, and also better than the all-
purpose secondary structure prediction algorithms,
thus their use should be preferred. We emphasized on
the need for finding ways to improve the performance
of the methods, and we provided evidence that (at least
for the time being) newly crystallographically
determined structures will continue to improve the
performance of the already available methods.
Furthermore, we proposed new directions that could
be followed to develop new methods to reliably
predict the topology of B-barrel integral membrane
proteins. As previously stated, threading or homol-
ogy modelling studies might yield interesting insight
into the structural features of a wide range of proteins
belonging to this class until hard to obtain experimen-
tal data become available (Casadio et al. 2003b).

Large-scale predictions will definitely facilitate the
identification of surface exposed regions in predicted
outer membrane proteins and complement or guide
laboratory analysis of key bacterial target proteins.
Such an approach might lead, for example, to more
efficient design of microbial cell-surface display
systems (Lee et al. 2003). Additionally, bioinformatics
methods might be applied in combination with
experimental low-resolution structural information
(e.g. Infrared Dichroism; Marsh 2000) to yield more
accurate models in the absence of detailed atomic
structures of outer membrane proteins.
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