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Molecular Recognition Features (MoRFs) are defined as short, intrinsically disordered regions in proteins that
undergo disorder-to-order transition upon binding to their partners. As their name suggests, they are implicated
in molecular recognition, which serves as the initial step for protein–protein interactions. Membrane proteins
constitute approximately 30% of fully sequenced proteomes and are responsible for a wide variety of cellular
functions. The aim of the current study was to identify and analyze MoRFs in membrane proteins. Two datasets
of MoRFs, transmembrane and peripheral membrane protein MoRFs, were constructed from the Protein Data
Bank, and sequence, structural and functional analysis was performed. Characterization of our datasets revealed
their unique compositional biases andmembrane proteinMoRFswere categorized depending on their secondary
structure after the interaction with their partners. Moreover, the position of transmembrane protein MoRFs in
relation with the protein's topology was determined. Further studies were focused on functional analyses of
MoRF-containing proteins and MoRFs' partners, associating them with protein binding, regulation and cell
signaling, indicating half of them as putative hubs in protein–protein interaction networks. In conclusion, we
provide insights into the disorder-based protein–protein interactions involving membrane proteins.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the past decade or so there has been a growing interest in the
field of protein intrinsic disorder-related research. Intrinsically disor-
dered proteins (IDPs) possess no rigid 3D structure under physiological
conditions, yet they are functionally active [1]. A protein may be fully
or partly disordered, containing long or short intrinsically disordered
regions (IDRs) [2,3]. Genome-wide prediction-based assessments re-
vealed that the natural abundance of IDRs significantly increases from
Prokaryota to Eukaryota [4]. Specifically, in Eukaryota, 20–30% of pro-
teins are IDPs and more than 50% of proteins contain long IDRs [5],
while much lower percentages in Eubacteria and Archaea were noted
[6]. Due to their biological abundance and functional importance, a num-
ber of specialized databases are dedicated to IDPs and IDRs, such as
DisProt [7,8], MobiDB [9] and IDEAL [10].

As it is widely accepted, the amino acid sequence determines a
protein's ability to fold or not to fold under given environmental
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conditions and comparison of IDPs with ordered proteins revealed
their distinct amino acid composition [11–14]. IDPs and IDRs have
been found to possess little or no secondary structure elements and
lack a stable tertiary structure [15]. The biological functions of IDPs
often depend on the absence of a specific 3D structure [16].

IDPs are classified into seven functional classes:molecular recognition
effectors, molecular assemblers, chaperones, metal sponges, molecular
recognition scavengers, modification sites and entropic chains [17]. It
has been found thatmany IDPs are involved in regulation, control, molec-
ular recognition and cell signaling. Moreover, IDPs are able to interact
with multiple partners. They frequently serve as the popular nodes, or
hubs, in protein interaction networks, where one IDP binds tomany part-
ners or many IDPs bind to one partner [18,19] (one-to-many signaling
and many-to-one signaling [3], respectively). It should be noted that
many IDPs are able to undergo a disorder-to-order transition upon bind-
ing to a specific partner [13,19–25]. These short binding regions were
later named Molecular Recognition Features (MoRFs) or Molecular
Recognition Elements (MoREs) [5]. In addition, Eukaryotic Linear Motifs
(ELMs) [26,27] and Short Linear Motifs (SLiMs) [28–30], although based
on consensus sequence patterns rather than structural characteristics,
are essentially describing the same binding elements as MoRFs [27].
Both linear motifs and MoRFs refer to short protein segments and linear
motifs often reside within IDRs and adopt a well-defined structure upon
binding, similarly to MoRFs [31,32]. MoRFs and linear motifs participate
in peptide-mediated interactions, in which a short peptide stretch from
one partner interacts with a large protein surface from the other partner
[33]. Furthermore, a number of common examples establish a connection
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between these twomodels of molecular recognition andMoRFs and line-
ar motifs were shown to overlap significantly [34].

MoRFs may form upon binding alpha-helices (α-MoRFs), beta-
strands (β-MoRFs), irregular structure (i-MoRFs) or combinations of
these elements (complex MoRFs). As their name suggests, they are con-
sidered to be implicated in molecular recognition, which serves as the
initial step for protein–protein interactions [35]. Further studies, focused
on characterizing the interactions between MoRFs and their binding
partners, revealed the unique amino acid composition and geometric
and physicochemical properties of these interfaces [36]. Based on these
findings, a few MoRF prediction algorithms have been proposed
[5,35,37–39]. The first predictors were specifically developed for
α-MoRFs [5,37]. It was also noted that MoRFs often mapped in ordered
regions flanked by long predictions of disorder [35]. More recently, two
other algorithms for the prediction of MoRFs were developed, ANCHOR
[38] and MoRFpred [39] as well as an algorithm for the prediction of
SLiMs, SLiMPred [40]. All are available online as web-servers.

A functional analysis of MoRFs revealed that approximately 20% of
MoRF-containing proteins are transmembrane [35]. Membrane proteins
constitute approximately 30% of fully sequenced proteomes and are re-
sponsible for a wide variety of cellular functions, including cell signaling
[41]. Membrane proteins are grouped into 3 distinct classes: transmem-
brane proteins that span the lipid bilayer, peripheral membrane proteins
that are non-covalently associated with transmembrane proteins or
lipids and lipid-anchor proteins that are covalently anchored to lipids
[42]. Few studies concerning intrinsic disorder and membrane proteins
have been conducted. One of them demonstrated that IDRs of alpha-
helical and beta-barrel transmembrane proteins exhibit statistically
distinct amino acid compositional biases in comparison with those of
globular proteins [43]. Other studies confirmed the abundance of IDRs
in eukaryotic transmembrane proteins as opposed to the bacterial
ones, and revealed that IDRs preferentially occur on the cytoplasmic
side of human plasma transmembrane proteins [44,45].

The aim of the current study was to identify and analyze MoRFs in
membrane proteins, designated as mpMoRFs. Two mpMoRFs datasets
were created: tmpMoRFs and pmpMoRFs, consisting of MoRFs in trans-
membrane and peripheral membrane proteins, respectively. Subse-
quently, sequence, structural and functional analysis of the mpMoRFs
datasets was conducted.

2. Methods

2.1. Assembly of mpMoRFs and control datasets

An initial dataset of MoRFs was constructed from the Protein Data
Bank (April 2012), following the approach of Mohan et al., by selecting
membraneprotein sequences between10 and70 residues [46],which in-
teract with proteins longer than 100 residues [35]. The assumption was
made that such short amino acid sequences would be less likely to form
a rigid 3D structure prior to interaction [35]. However, fragments shorter
than 10 residues were not included in the dataset, mainly in order to
avoid chameleon segments, identical but unrelated sequencesup to 8 res-
idues that may adopt different secondary structures [36]. Initially, we
used the PDB advanced search in order to isolate entries containing
more than 2 protein entities and at least one sequence between 10 and
70 residues. The corresponding 4697 PDB files were downloaded and
both nucleotide sequences and protein sequences containing unspecified
amino acids (designated as UNK) were discarded. From the remaining
4682 PDB entries, only the 3569 containing at least one protein sequence
longer than 100 residues were used. The appropriate information (PDB
ID, chain, sequence and the DBREF record that provides cross-reference
between the PDB sequences and a corresponding public database)
concerning the chains between 10 and 70 residues was retained. Using
the DBREF record of each PDB entry, 1115 unique MoRF-containing
proteins were collected from the Uniprot database [47]. The annotation
of these 1115 proteins in Uniprot was used to identify 289 membrane
proteins, which were further categorized in 191 transmembrane, 79 pe-
ripheral membrane and 19 lipid-anchor membrane proteins. Finally,
non-redundant datasets for mpMoRFs were created by applying length-
dependent thresholds, using UniqueProt [48], on the short sequences of
MoRFs. The non-redundant tmpMoRFs, pmpMoRFs and lampMoRFs
datasets consist of 101 transmembrane, 56 peripheral membrane and 9
lipid-anchor protein MoRFs, respectively (Tables S1, S4, S5, S6).

In addition to the mpMoRFs sets, four additional control datasets
were constructed:

(a) The short sequences of MoRFs that correspond to the
remaining 826 non-membrane proteins were redundancy reduced
using UniqueProt and a non-redundant set of 936 non-mpMoRFs was
created (Table S7). The non-mpMoRFs dataset was used in order to
compare the amino acid composition of mpMoRFs to MoRFs derived
from non-membrane proteins, as described in Section 3.2. (b) The or-
dered protein–protein complexes set of Gunasekaran et al. [49] was
obtained, which consists of interacting proteins, known to be ordered
when isolated. Only 10 out of the 26 complexes of the initial dataset
were used, those present in solution and not only in the crystal
(Table S8). This dataset was used in the structure-based criterion that
allows the discrimination between ordered proteins' complexes and
MoRFs' complexes, as described in Section 3.4. (c) Human, experimen-
tally verified peripheral plasmamembrane proteins were selected from
Uniprot and redundancy reduced to 30% using CD-HIT [50], in order to
obtain a dataset of 148 human peripheral plasma membrane proteins
(Table S10). This dataset was used in order to compare the amino acid
composition of pmpMoRFs to peripheral membrane proteins, as de-
scribed in Section 3.2. (d) The alpha-helical transmembrane proteins
dataset provided by PDBTM [51], a database that contains the trans-
membrane proteins of PDB, was redundancy reduced to 30% using
CD-HIT, to obtain a dataset consisting of 286 alpha-helical proteins
(Table S9). This dataset was used in order to compare the amino acid
composition of tmpMoRFs to transmembrane proteins, as described in
Section 3.2. (e) Human transmembrane proteins were selected from
Uniprot by performing an advanced search in order to create a dataset
of 5191 reviewed human transmembrane proteins (Table S11). This
dataset was used in GO-Term enrichment analysis, in order to compare
the molecular functions of our human transmembrane MoRF-containing
proteins to those of human transmembrane proteins in general, as de-
scribed in Section 3.7.

2.2. Sequence analysis

Compositional profiling of mpMoRFs was analyzed in comparison
to a reference set using Composition Profiler, a tool assessing statisti-
cally significant enrichment and depletion of amino acids, either indi-
vidually or grouped according to their physicochemical and structural
properties [52]. The default settings of the Composition Profiler web
server were used for the calculations.

PONDR-FIT [53], a sequence-based meta-predictor of intrinsically
disordered regions, was used to assess the presence of intrinsic disorder
in mpMoRFs and MoRF-containing proteins.

2.3. Structural analysis

MoRFswere categorized into four different types,α,β, i and complex,
based on the largest percentage value of their secondary structure types
formed upon binding, as inferred by DSSP [54,55]. If a MoRF has no clear
preponderance of any secondary structure type (at least 1% greater than
the other two types), then it is designated as a complex-MoRF [27,39].
Predisposition of each mpMoRF to form a specific secondary structure
type upon binding was assessed using the secondary structure predictor
Porter [56].

Solvent accessible surface area (ASA) was calculated using DSSP
[54,55]. The interface area (Å2) buried by a complex was calculated as
the difference between the sum of the surface areas of the separate
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monomers and the surface area of the complex. Per residue surface area
and per residue interface area were calculated by dividing surface area
and interface area with the number of MoRF residues present in the
solved structure [49].

2.4. Functional analysis

Functional analyses of MoRF-containing proteins and MoRFs' part-
ners were carried out using the WEB-based GEne SeT AnaLysis Toolkit
(WebGestalt) [57] and the Generic Gene-Ontology Term Finder
(GOTermFinder) [58]. Protein–protein interactions of MoRF-containing
proteins and MoRFs' partners were inferred from the IntAct molecular
interaction database [59]. Only binary interactions that did not originate
from spoke-expanded co-complexes were used, in order to increase the
accuracy of the analysis.

3. Results and discussion

3.1. Membrane protein MoRFs datasets

Three non-redundant datasets of membrane MoRFs were con-
structed: tmpMoRFs, pmpMoRFs and lampMoRFs (Tables 1, S4, S5,
S6). The tmpMoRFs dataset consists of 101 MoRFs derived from 94
different transmembrane proteins. Specifically, there are 5 proteins
containing 2 MoRFs each and 1 containing 3. Similarly, the pmpMoRFs
dataset contains 56 MoRFs from 50 different proteins, with 5 proteins
containing 2 MoRFs each and 1 containing 3. Finally, there are only 9
lampMoRFs from 9 different lipid-anchor proteins. This dataset was
very small and therefore was not used in further statistical analyses.
In all datasets, the PDB structures were mostly determined using
X-ray crystallography (94, 48 and 8 in the tmpMoRFs, pmpMoRFs and
lampMoRFs dataset, respectively) and, to a lesser extent, solution
NMR. All tmpMoRFs and pmpMoRFs have an interacting interface at
least 300 Å2, and for more than 95% of them the interface is at least
400 Å2 [39].

The vast majority of MoRF-containing proteinswere found to be eu-
karyotic (Fig. S1), as expected, sinceMoRFs are by definition disordered
when unbound and IDRs are more abundant in Eukaryota. Specifically,
mostMoRF-containing proteins in our datasets were human. The abun-
dance of IDRs in Eukaryota has been attributed to their increased com-
plexity in comparison to Prokaryota, which leads to a greater need for
signaling and regulation [4,21,23]. Length distribution analysis of both
non-mpMoRFs and mpMoRFs (Fig. S2) revealed that approximately
half of the tmpMoRFs are very short, between 10 and 20 residues, as ob-
served previously for MoRFs in general [35] and similarly to our
non-mpMoRFs control dataset. On the other hand, length distribution
of the pmpMoRFs dataset is more uniform.

3.2. Amino acid composition of mpMoRFs

Previous studies regarding amino acid preferences of IDRs led to
the identification of disorder- and order-promoting residues (A, R,
G, Q, S, P, E, K and W, C, F, I, Y, V, L, N, respectively) [11,13,14].
Amino acid compositional bias of MoRFs is expected to be between
those of ordered and disordered proteins, since MoRFs are supposed
Table 1
Number of protein MoRFs, MoRF-containing proteins, MoRF-containing organisms and
total MoRFs' amino acids in all datasets.

Dataset MoRFs Amino acids Proteins Organisms

Non-membrane 936 27660 716 151
Transmembrane 101 2633 94 19
Peripheral membrane 56 1943 50 13
Lipid-anchor membrane 9 424 9 5
to be disordered when unbound but, in parallel, must retain the ability
to mediate protein–protein interactions through a disorder-to-order
transition upon binding [35]. In order to examine the compositional
biases of the mpMoRFs datasets, we compared them to a number of
control datasets, using the Composition Profiler web server [52]. The
amino acids are arranged from the least to the most hydrophobic
according to the Kyte–Doolittle hydrophobicity scale [60] (Figs. 1,2).

Initially, both tmpMoRFs and pmpMoRFs datasetswere compared to
the overall amino acid composition of proteins, more specifically the
SwissProt background dataset provided by Composition Profiler [52].
A statistically significant preference of mpMoRFs for charged residues
(D, E, K and R) was observed. It should be noted that D, K and R, are
considered as disorder-promoting residues [11,13,14]. Furthermore,
mpMoRFs are significantly depleted in the most hydrophobic,
order-promoting residues, such as I, V and L. Therefore, the composi-
tional biases of mpMoRFs are a possible indicator of their disordered
nature. Interestingly, tmpMoRFs show also a statistically significant
preference for C, as observed previously for MoRFs in general [35], in
contrast to the pmpMoRFs. However, pmpMoRFs possess biases closer
to those of IDRs than to other MoRFs: they are depleted in aromatic
residues and C.

Similarly, the amino acid composition of tmpMoRFs and pmpMoRFs
was assessed in comparison to non-mpMoRFs, and it was revealed that
mpMoRFs have their own compositional biases. TmpMoRFs are signifi-
cantly enriched in aromatic residues (Wand Y). Notably,W is abundant
in IDRs of transmembrane proteins [43]. Interestingly, tmpMoRFs are
also enriched in C, while MoRFs in general already possess a high con-
tent of C, attributed to the formation of disulfide bonds [35] and, in con-
trast, IDRs of transmembrane proteins are depleted in C [43].

The compositional biases of MoRFs appear enhanced when com-
pared to the amino acid sequence surrounding a given MoRF, which is
less likely to contain unannotated MoRFs [39]. We defined the flanking
regions of membrane MoRFs as the surrounding sequences, upstream
and downstream of each MoRF, equal to the average length of MoRFs
in each dataset: 27 residues for tmpMoRFs and 35 residues for
pmpMoRFs. These flanking regions were assessed using PONDR-FIT,
and approximately 80% and 89% of tmpMoRFs and pmpMoRFs, respec-
tively, were found to reside in at least partly disordered regions. The
comparison of mpMoRFs with their flanking regions revealed that
mpMoRFs are significantly enriched in aromatic residues. It has been
suggested previously that aromatic residues are strategically positioned
within IDRs in order to ensure proper function [2], which, in the case of
MoRFs, is the ability to contribute to protein–protein interactions. Fur-
thermore, mpMoRFs have a tendency to be more hydrophobic than
their flanking regions. This observation is in agreement with previous
data [39] and with the notion that a local increase of hydrophobicity
in IDRs marks the existence of a putative binding site [36,61]. A statisti-
cally significant enrichment of mpMoRFs in positively charged residues
(K and R) was also noted. In the case of tmpMoRFs, this can be attribut-
ed to the fact that cytoplasmic regions of transmembrane proteins have
a net positive charge (positive inside rule) [62,63], and IDRs, and conse-
quently MoRFs, as noted in Section 3.5, are also located mostly in the
cytoplasmic regions [44].

Finally, we wanted to compare the amino acid preferences of
mpMoRFs to those ofmembrane proteins. To this end, we used as a back-
ground set 286 alpha-helical transmembrane sequences from PDBTM.
Their transmembrane segments were removed, because their strong
compositional biases for hydrophobic residues would cloud those of
MoRFs. A statistically significant enrichment of tmpMoRFs in charged
residues and depletion in hydrophobic residues was noted. The increased
aromatic content of tmpMoRFs, evident previously in their comparison to
non-mpMoRFs but not in their current comparison to non-
transmembrane sequences of transmembrane proteins, can be attributed
to the transmembrane alpha-helical proteins' compositional bias. Similar-
ly, our pmpMoRFs were compared to the human plasma peripheral
membrane proteins dataset. Again, pmpMoRFs were observed to be



Fig. 1. Compositional profiling of tmpMoRFs. Amino acid propensity of tmpMoRFs is compared to: (A) SwissProt [47], (B) the non-mpMoRFs dataset, (C) the flanking regions of
tmpMoRFs and (D) the PDBTM [51] alpha-helical proteins dataset (*non-transmembrane segments only).

Fig. 2. Compositional profiling of pmpMoRFs. Amino acid propensity of pmpMoRFs is compared to: (A) SwissProt [47], (B) the non-mpMoRFs dataset, (C) the flanking regions of
pmpMoRFs and (D) the human peripheral plasma membrane proteins dataset.
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Fig. 3. Intrinsic disorder in mpMoRFs. A structure-based criterion [49] was used to
evaluate the presence of intrinsic disorder in mpMoRFs datasets. The per-residue inter-
face area (x-axis) and the per-residue surface area (y-axis) of MoRFs are larger than
those of the known ordered proteins used for comparison.
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significantly enriched in positively charged residues and depleted in hy-
drophobic residues.

3.3. Secondary structure of mpMoRFs

MoRFs are categorized asα-MoRFs, β-MoRFs and i-MoRFs, based on
their secondary structure upon binding: alpha-helix, beta-strand and
irregular, respectively. Furthermore, complex-MoRFs exist, arising from
combinations ofα, β and i-MoRFs [5,35]. In both datasets, approximately
half of the MoRFs are irregular, while β-MoRFs and complex-MoRFs are
rare (Fig. S3A). In the case of tmpMoRFs, lack of beta-structure is possibly
due to the prevalence of alpha-helical transmembrane proteins in our
dataset, as will be discussed shortly in Section 3.5.

The secondary structure distribution of mpMoRFs' residues, as
inferred by DSSP, was assessed and the percentages of residues in
alpha-helical, beta-strand and irregular conformations were calculat-
ed (Fig. S3B). In both tmpMoRFs and pmpMoRFs datasets, approxi-
mately 60% of residues were either found in irregular conformation
or with missing PDB file coordinates. Missing density residues are
often associated with the presence of disorder. The percentage of res-
idues in alpha-helical conformation is much higher than those in
beta-strand in both datasets. Overall, these results are in agreement
with those observed previously for MoRFs in general [35].

In the same study, it was noted that MoRFs may possess secondary
structure preferences that determine their actual structure upon binding
[35]. We wanted to examine whether protein structure formation influ-
ences not only mpMoRFs' disorder, but also their secondary structure.
Therefore, we compared the actual and the predicted percentage value
of residues in alpha-helical, beta-strand and irregular conformation in
each type of mpMoRFs, using secondary structure predictor Porter
(Tables S2, S3). In bothmpMoRFs datasets, Porter predictions concerning
MoRFs' secondary structure are similar to DSSP assessments, indicating
that the secondary structural predisposition of mpMoRFs is mostly re-
sponsible for their structure upon binding, as has been shown in the
case of MoRFs in general [35].

3.4. MpMoRFs and intrinsic disorder

IDPs have been considered to be functionally ergonomic because of
their ability to provide extended intermolecular interfaces, without
being exceptionally large themselves [64]. A structured-based criterion
for distinguishing disordered from ordered protein complexes [49],
which is based on the above idea, has been previously used for evalua-
tion of intrinsic disorder in MoRF datasets [35]. The per-residue surface
area versus the per-residue interface area plot (Fig. 3) demonstrated
clearly the distinction between both mpMoRFs' complexes and a set
of ordered protein–protein complexes. As expected, there is no possible
distinction between the tmpMoRFs and the pmpMoRFs datasets.

Furthermore, we used a sequence-based meta-predictor, PONDR-FIT
[53], to assess the presence of disorder in ourMoRFs. Approximately 34%
and 51% of tmpMoRFs' and pmpMoRFs' residues, respectively, were
found to be disordered. The decreased percentage of predicted disorder
in tmpMoRFs compared to pmpMoRFs may be attributed to the fact
that PONDR-FIT was trained with globular proteins. It should be noted
that PONDR-FIT and other intrinsic disorder predictors are not capable
of recognizingMoRFs themselves, due to the less disordered,more stable
and more hydrophobic nature of MoRFs [39]. Actually, it was observed
that when using a predictor for long IDRs, such as PONDR VL-XT
[65,66], binding siteswere often predicted to be ordered short regions lo-
cated within a long IDR [35].

3.5. Topology of transmembrane MoRF-containing proteins

MoRF-containing proteins in the tmpMoRFs dataset were classi-
fied according to the number of their membrane-spanning regions
(Fig. S4). 63 out of 94 transmembrane MoRF-containing proteins
were found to be single-spanning and classified into types I, II, III or
IV (Fig. S5), with 47 characterized as type I. There are 4 proteins
with 7 membrane-spanning regions and 3 of them are G-protein
coupled receptors. It should be noted that all proteins but one possess
alpha-helical transmembrane segments. The sole beta-barrel in the
dataset has 12 transmembrane beta-strands, belongs to the phospho-
lipase A1 family and is one of the very few enzymes located at the
outer membrane of the bacterium Escherichia coli. Transmembrane
beta-barrel proteins, particularly porins, have a negative association
with disorder [67], thus possibly explaining their scarcity in our
dataset.

We then determined the position of MoRFs in relation to the trans-
membrane proteins' topology (Fig. S6), as well as the distribution of
MoRFs' residues in the cytoplasmic, extracellular, transmembrane and
intramembrane segments of the MoRF-containing proteins. Approxi-
mately 70% of MoRFs and 60% of the MoRFs' residues were found to
be cytoplasmic. Apparently, cytoplasmic MoRFs are shorter than extra-
cellular ones. Interestingly, 1 MoRF, belonging to a bacterial protein,
contains a re-entrant loop, a structure that goes halfway into the lipid
bilayer and comes out again on the same side. In addition, the secondary
structure distribution of membrane MoRFs' residues, as inferred by
DSSP,was assessed oncemore, this time for cytoplasmic and extracellu-
larMoRFs separately (Fig. S7). An increase in the sumofmissing density
and irregular structure residues was observed in cytoplasmic MoRFs
(64%) compared to extracellular ones (54%). In summary, MoRFs are lo-
cated mostly in the cytoplasmic region of the transmembrane proteins
and cytoplasmicMoRFs are less likely to consist ofwell-defined second-
ary structural elements. These findings are in agreement with previous
observations that IDRs preferentially occur on the cytoplasmic side
[44,45,68], since MoRFs by definition are considered to be disordered
when unbound.MoRFs present in the extracellular side, where disorder
is relatively limited and a more rigid structure is favored, seem to com-
ply with this tendency upon binding. A recent study reports the abun-
dance of SLiMs on the cytoplasmic side of single-spanning proteins,
co-localizing with a peak of disorder approximately 30 residues from
themembrane [45]. Single-spanning proteins, which probably function
as receptors [69,70], are approximately 2/3 of our dataset too. Notably,
68% of MoRFs located in single-spanning proteins were found to be
cytoplasmic and their median distance from the membrane is 24 resi-
dues. Both MoRFs and SLiMs are considered to mediate molecular

image of Fig.�3
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recognition and their localization probably reflects the increased need
for protein–protein interactionswithin the cell in comparison to the ex-
tracellular environment.

3.6. MpMoRFs' partners

Apart fromMoRF-containingproteins,mpMoRFs' partners in the ini-
tial complexes derived from PDBwere determined and analyzed. It was
observed that a MoRF could interact with more than one partner, al-
though these cases are aminority. Specifically, in the tmpMoRFs dataset
there are 18MoRFs interactingwith 2 partners each, 1MoRFwith 3 and
1 MoRF with 4. Similarly, in the pmpMoRFs dataset there are 3 MoRFs
interacting with 2 partners each, 3 MoRFs with 3 and 3 MoRFs with 4.
In some cases it was also observed that 1 protein could interact with
more than 1 MoRFs. For example, human calmodulin was identified as
the partner of 8 different MoRFs (7 tmpMoRFs and 1 pmpMoRF). In
total, the tmpMoRFs' and pmpMoRFs' partner datasets consist of 84
and 60 different proteins, respectively.

The next step was to determine whether MoRFs' partners are trans-
membrane, peripheral membrane or lipid-anchor membrane proteins.
Otherwise, if no reported association with cellular membranes was
noted, theywere designated as globular proteins (Fig. S8). Approximately
half of tmpMoRFs' partners are globular proteins. Of these globular
partners, 16 are antibodies, 7 secreted and 23 located in the cytoplasm.
The vast majority of peripheral membrane partners in the tmpMoRFs
dataset are also cytoplasmic. Regarding pmpMoRFs, approximately 40%
of their partners are cytoplasmic peripheral membrane proteins, and
their globular ones are also mostly cytoplasmic. The sole exception is
the exotoxin type C of the bacterium Streptococcus pyrogenes. This is
not surprising, since the vast majority of peripheral membrane
MoRF-containing proteins are located intracellularly. Transmembrane
partners were also noted in both datasets, while lipid-anchor membrane
partners are a minority.

3.7. Functional analysis of membrane MoRF-containing proteins and
MoRFs' partners

Traditionally, IDPs and proteins that contain IDRs are classified
according to their function into a small number of categories [17],
while, more recently [67,71], an extensive analysis revealed specific
functions positively or negatively associated with the presence of in-
trinsic disorder. Functional analysis of membrane MoRF-containing
proteins was restricted to human ones, due to their abundance in our
datasets. More specifically, there are 49 transmembrane and 22 periph-
eral membrane MoRF-containing proteins.

A functional enrichment analysis of all 49 transmembrane and 22 pe-
ripheral membrane human MoRF-containing proteins was conducted,
using GOTermFinder for finding significant over-represented GOmolec-
ular function terms. Initially, human genome was used as a background
population. Protein binding, binding and regulation appear to be the
most important molecular functions of the MoRF-containing proteins
in both datasets. Alternatively, for human transmembrane MoRF-
containing proteins, human transmembrane proteins dataset was used
as background population, instead of the human genome. This modifica-
tion allowed the comparison, in terms of molecular function, of the
transmembraneMoRF-containing proteins specifically with other trans-
membrane proteins. Fewer GO terms were considered significant, all
concerning binding and, to a lesser extent, cell-signaling. This is not
unexpected, since 42 out of 49 human proteins are single-spanning,
and probably function as receptors [69,70]. In addition, a GO Slim analy-
sis of the membrane MoRF-containing proteins, using WebGestalt,
supported the previous observations (Fig. S9).

Functional analysis of membrane MoRFs' partners was also restrict-
ed to the human ones. There are 29 and 21 human proteins in the
tmpMoRFs' and pmpMoRFs' partner datasets, respectively. GO-Term
enrichment analysis, carried out using GOTermFinder, revealed that
the molecular functions of MoRFs' partners are very similar to those of
MoRF-containing proteins, with protein binding being the most promi-
nent one. GO Slim analysis supported this observation (Fig. S10). It
should be noted that molecular recognition, process regulation and
cell signaling are functions primarily associated with IDRs [19],
supporting the connection between MoRFs and intrinsic disorder.
Concerningmolecular recognition, IDRs are considered to have a kinetic
advantage in comparison to ordered proteins, since they specialize in
high specificity - low affinity interactions, display increased interaction
speed and possess larger interacting surfaces [13]. Furthermore, it has
been observed thatMoRFs have the ability to fold differently depending
on their partner [35]. Proteins with IDRs play an important role in reg-
ulation as they can be more tightly regulated themselves: they are
more vulnerable to proteolytic degradation [20,72] and more suscepti-
ble to enzymatic post-translational modifications [25]. Membrane pro-
teins are heavily implicated in signal transduction and it is probable that
our mpMoRFs mediate the interactions necessary for cell signaling.

It has been proposed that hubs, proteinswithmany connections in a
protein–protein interaction network, use IDRs for binding to multiple
partners [18], the abundance of intrinsic disorder in hubs when com-
pared to non-hubs has been verified [73,74] and specific examples,
such as p53, have been previously illustrated [75]. We examined
whether the humanmembraneMoRF-containing proteins are implicat-
ed in an increased number of interactions and could possibly serve as
hubs. The number of interactions for each MoRF-containing protein in-
dividually was inferred from the IntAct molecular interaction database.
In general, proteins with more than 5 interactions are considered hubs
[73,76–78]. 44% and 45% of the transmembrane and the peripheral
membrane MoRF-containing proteins, respectively, have more than 5
interactions, and there are a few implicated in more than 30, such as
single-pass type I amyloid beta A4 protein and human peripheral
estrogen receptor. It is possible that the MoRF-containing hubs would
be date hubs, proteins that interact with their numerous partners se-
quentially and not simultaneously, in contrast to party hubs. Date
hubs are associated with cell signaling [79] and are more disordered
that party hubs [80,81]. It should be mentioned that approximately
25% and 43% of residues in transmembrane and peripheral membrane
MoRF-containing proteins, respectively, were predicted to be disor-
dered using PONDR-FIT. In transmembrane proteins, the percentage of
intrinsically disorder amino acids is increased in the cytoplasmic loops
(43%), where the majority of protein–protein interactions would
occur, in agreement with previous observations [44].

A similar analysis was carried out for themembraneMoRFs' partners.
Again, some proteins are putative hubs: single-pass type I epidermal
growth factor receptor, single-pass transmembrane Bcl-2-like protein
1, membrane-associated cell division control protein 42 homolog and
globular calmodulin. Interestingly, the percentage of the partners impli-
cated in an increased number of interactions is higher than that of
MoRF-containing proteins (59% and 57% for the transmembrane and
the peripheral membrane dataset, respectively). These hubs could be
ordered proteins interacting with many disordered partners [18].
Concerning the other half of the datasets, the non-hub MoRF-
containing proteins and MoRFs' partners, it has been reported that, in
the case of non-hubs, proteins with IDRs preferentially interact with
each other [82]. Therefore, it would be possible for partners to contain
their own MoRFs.

3.8. Sequence-based prediction of MoRFs: selected examples

Two different algorithms designed to predict MoRFs, ANCHOR and
MoRFpred, were used to assess our transmembrane and peripheral
membrane MoRF-containing proteins, in order to evaluate their per-
formance against mpMoRFs.

ANCHOR [38] is a tool built to predict disordered protein-binding re-
gions that undergo a disorder-to-order transition upon binding. The al-
gorithm identifies these segmentswithin an amino acid sequence based
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on three criteria: (1) they must reside in regions predicted as disor-
dered using IUPred [83], (2) they cannot form enough interchain inter-
actions to fold on their own and (3) they are likely to energetically gain
and be stabilized by interacting with a globular protein partner [38,61].
At least 1MoRFwas predicted in 54 out of 94 transmembrane and in 47
out of 50 peripheralmembraneproteins. 20 out of 101 (20%) tmpMoRFs
and 38 out of 56 (68%) pmpMoRFs were correctly predicted by
ANCHOR. The increased success in the prediction of pmpMoRFs,
which is equivalent to the almost 70% accuracy reported previously
[38], is probably due to the greater similarity of peripheral membrane
proteins with the globular ones that were used to build the algorithm.
It should be taken into account that ANCHOR demonstrates increased
success in predicting the presence, if not the exact position, of MoRFs
in peripheral membrane proteins.

While this manuscript was in preparation, a new algorithm for the
prediction of MoRFs, called MoRFpred, became available. MoRFpred
utilizes both sequence alignments and support vector machines to
predict all types of MoRFs and is claimed to outerperform ANCHOR
[39]. In our datasets, 35 out of 101 (35%) tmpMoRFs and 33 out of
56 (59%) pmpMoRFs were predicted correctly. This algorithm seems
to be more effective than ANCHOR at recognizing tmpMoRFs, possibly
because they were not excluded from its training dataset. Again, an
increased rate of success is observed for pmpMoRFs, although
ANCHOR performed better on this dataset.

SLiMpred [40] predicts SLiMs using machine-learning techniques
and structural, biophysical and biochemical data. We assessed our
transmembrane and peripheral membrane MoRF-containing proteins
Fig. 4. Selected examples of mpMoRFs. ANCHOR [38] prediction of the yeast transmembran
binding partners (grey) SLY1 and SEC24. PDB structures were visualized using PyMOL [86]
using SLiMpred in order to examine whether predicted SLiMs overlap
with mpMoRFs. Interestingly, 81 out of 101 (80%) tmpMoRFs and 43
out of 56 (77%) pmpMoRFs were found to contain at least one residue
labeled as SLiM. This evidence supports the strong correlation be-
tween MoRFs and linear motifs [34]. Given that SLiMpred demon-
strates increased efficiency in recognizing MoRFs in our datasets,
compared to ANCHOR and MoRFpred, we propose that these algo-
rithms, based on different concepts, could be used in a complementary
way in MoRFs detection in order to achieve increased success rate. A
reverse approach, using ANCHOR to discriminate between linear mo-
tifs real instances and random patternmatching hits, has already been
used [34].

Selected examples from both the transmembrane and the peri-
pheral membrane MoRF-containing protein datasets are illustrated
below.

SED5 of Saccharomyces cerevisiae is a single-spanning type IV
transmembrane protein, belonging to the syntaxin family. It plays a
crucial role in vesicular transport between ER and the Golgi complex.
SED5 protein is recognized by the SEC23/24 subcomplex of yeast
COPII and mutagenesis of residue 206 (asparagine to alanine) abol-
ishes the interaction between SED5 and SEC24 [84]. Furthermore,
SM protein SLY1 interacts with SED5 protein in order to mediate in-
tracellular membrane fusion [85]. Both MoRFs, an i-MoRF and an
α-MoRF respectively, were identified by ANCHOR (Fig. 4 [86]).

Human ALK tyrosine kinase receptor (ALK) is a single-spanning
type I transmembrane protein with constitutive tyrosine kinase activ-
ity that interacts with many signaling molecules. It was shown to
e MoRF-containing protein SED5 and the complexes between MoRFs (green) and their
.

image of Fig.�4
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interact with fibroblast growth factor receptor substrate 3 (FRS3), a
lipid-anchor membrane protein implicated in various cell-signaling
pathways, through a phosphotyrosine binding domain [87]. The
i-MoRF of ALK was predicted by ANCHOR (Fig. S11).

Human peripheral membrane ADP-ribosylation factor-binding
protein GGA1 is implicated in protein sorting and trafficking between
the trans-Golgi network and endosomes, in collaboration with
clathrin and ADP-ribosylation factor. The interaction between GGA1
unstructured hinge region, an i-MoRF, and GGA1 gamma-adaptin
ear is involved in the auto-regulation of GGA1 clathrin-mediated
trafficking [88]. In the second complex [89], GGA1's partner is the
mouse ADP-ribosylation factor 2 (ARF2), which has a 96% identity
to human ADP-ribosylation factor 1 (ARF1). Multiple mutations with-
in the α-MoRF (L182A, N194A, I197A, K198A, M200A and D204A)
have been shown to abolish the interaction between GGA1 and
ARF1 [90]. In this case too, both MoRFs were correctly predicted by
ANCHOR (Fig. S12).

Human peripheral membrane charged multivesicular body protein
4a (CHMP4A) is a key component of transport complex III (ESCRT-III),
which is involved in the sorting of endosomal proteins and the forma-
tion of multivesicular bodies. Programmed cell death 6-interacting
protein (PDCD6IP) is responsible for the recruitment of CHMP4A to
the ESCRT-III and a number of mutations within the α-MoRF (L214A,
L217A and W220A) have been shown to abolish the interaction be-
tween CHMP4A and PDCD6IP [91]. ANCHOR correctly identified the
MoRF (Fig. S13).

4. Conclusions

TmpMoRFs and pmpMoRFs share many common features with
each other and with globular protein MoRFs, however they retain
their own special characteristics, for example in terms of amino acid
composition. Compositional biases of tmpMoRFs are influenced by
IDRs', transmembrane proteins' and binding sites' preferences. There
are many indications that mpMoRFs are likewise implicated in molec-
ular recognition procedures, probably through a disorder-to-order
transition upon binding to their partner. The distinction between
mpMoRFs' complexes and ordered proteins' complexes, using a
structure-based criterion, suggests that MoRFs are indeed disordered
before the binding event. Especially in transmembrane proteins,
which often function as the link between the cellular unit and its envi-
ronment, high specificity, MoRF-mediated protein–protein interac-
tions appear to be crucial. This notion is supported by the presence
of MoRFs in the cytoplasmic segments of single-spanning proteins,
which possibly function as receptors and are involved in cell signaling.
In addition, peripheral membrane and globular partners of tmpMoRFs
and pmpMoRFs, as well as peripheral membrane MoRF-containing
proteins, are mostly located intracellularly, suggesting that they may
be implicated in intracellular regulation procedures. The abundance
of cytoplasmic MoRFs in both datasets can be attributed to the greater
need for protein–protein interactions within the cell in comparison to
the extracellular environment. It was also noted that available MoRF
predictors do not perform very well in the case or tmpMoRFs. There-
fore, we hope that, in the future, this information will facilitate identi-
fication, and possibly more accurate prediction, of tmpMoRFs and
mpMoRFs in general.
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