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ABSTRACT

Motivation:G-proteincoupled receptorsareamajorclassofeukaryotic

cell-surface receptors. A very important aspect of their function is the

specific interaction (coupling) with members of four G-protein families.

A single GPCRmay interact with members of more than one G-protein

families (promiscuous coupling). To date all published methods that

predict the coupling specificity of GPCRs are restricted to three main

coupling groupsGi/o, Gq/11 andGs, not includingG12/13-coupledor other

promiscuous receptors.

Results: We present a method that combines hidden Markov models

and a feed-forward artificial neural network to overcome these limita-

tions,while producing themost accuratepredictions currently available.

Using an up-to-date curated dataset, our method yields a 94% correct

classification rate in a 5-fold cross-validation test. The method predicts

also promiscuous coupling preferences, including coupling to G12/13,

whereas unlike other methods avoids overpredictions (false positives)

when non-GPCR sequences are encountered.

Availability: A webserver for academic users is available at http://

bioinformatics.biol.uoa.gr/PRED-COUPLE2

Contact: shamodr@cc.uoa.gr

Supplementary information: Results for promiscuous receptors

can be found at: http://bioinformatics.biol.uoa.gr/PRED-COUPLE2/
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INTRODUCTION

G-protein coupled receptors (GPCRs) constitute an extended super-

family of eukaryotic cell surface transmembrane proteins with well-

emphasized pharmacological properties (Kristiansen, 2004). This

unique class of receptor proteins mediates the actions of various

extracellular signals, thus providing an interface between a cell and

its environment (Gether, 2000). GPCRs are characterized by a com-

mon structural theme of seven transmembrane a-helices arranged in

a bundle, presumably with the same spatial arrangement to that

found in the only GPCR’s solved crystal structure that of rhodopsin

(Palczewski et al., 2000). According to a commonly used classi-

fication scheme (Horn et al., 2003), most GPCRs are grouped in

classes A–E. Class A is the most widespread and contains

rhodopsin-like GPCRs, class B contains the secretin-like GPCRs,

while class C the metabotropic glutamate/pheromone receptors.

These are the main classes of receptors in animals. From the

remaining major classes, the fungal class D comprises pheromone

receptors and class E contains cyclic AMP receptors such as those of

Dictyosteliun discoidium. Other less well characterized classes of

GPCRs include the smoothed/frizzled receptors or the chemorecept-

ors of insects (Hill et al., 2002).

The link between an activated GPCR and the cell’s physiological

responses is a heterotrimeric G-protein (abg) located in the interior

of the cell that interacts with the activated receptor. Based on

sequence similarity among different a subunits that are the main

determinants of G-protein coupling specificity and the functionality

of the heterotrimers that they participate in, four families of

G-proteins are defined in the literature: Gi/o, Gq/11, Gs and G12/13.

The term family is used throughout the manuscript to describe the

four classes of G-proteins, in accordance with the gpDB classifica-

tion scheme (Elefsinioti et al., 2004). Members belonging to these

four families mediate the actions of the majority of functionally

characterized GPCRs. The same receptor can interact with members

from more than one family of G-proteins resulting in multiple cel-

lular responses, a phenomenon known as promiscuous coupling

(Hermans, 2003). Therefore, the kind of cellular response upon

GPCR activation is determined mainly by the selective coupling

of GPCRs to members of the four G-protein families.

Despite the large numbers of identified GPCRs in known euka-

ryotic genomes (Fredriksson and Schioth, 2005), including the

human genome, and their profound importance as targets of

more than half of the prescribed drugs (Drews, 1996), many

GPCRs remain uncharacterized in terms of structure, function

and physiology. Thus, there is a need for computer algorithms

that predict properties of these orphan GPCRs (Flower and

Attwood, 2004). In this study we have focused on the prediction

of a very important aspect of GPCR function, that of selective

coupling to G-proteins. Such predictions would be very useful in

devising experiments to screen orphan receptors for ligands (Ashton

et al., 2004; Minic et al., 2005), since these experiments monitor a

specific intracellular response, which is determined by the recep-

tor’s coupling specificity.

Till date, several methods have been developed that perform a

similar task (Cao et al., 2003; Moller et al., 2001; Sgourakis et al.,
2005; Sreekumar et al., 2004; Yabuki et al., 2005); however their

predictions are limited in three families of G-proteins, not including

G12/13. G12/13 proteins are very important mediators of GPCRs

actions, since they are known to couple with many diverse receptors

(Riobo and Manning, 2005). Furthermore, all previous methods�To whom correspondence should be addressed.
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have not been designed to predict multiple coupling to more than

one family of G-proteins (promiscuous coupling of GPCRs). Our

method is novel in overcoming these barriers, while providing

accurate predictions. In a 5-fold cross-validation training scheme

that includes promiscuous receptors, it yields a correct classification

rate of 94% (Table 1). Its efficacy relies on a new refined library of

profile hidden Markov models (pHMMs) (Eddy, 1998; Eddy et al.,
1995) that have been trained to discriminate between distinct GPCR

coupling groups, including G12/13-coupled receptors, as well as on a

feed-forward artificial neural network (ANN) that combines the

results of individual profiles in order to produce the final prediction.

In addition, all previously published methods, excluding the method

published by our group, rely on membrane topology information,

which drastically diminishes their accuracy due to limitations in

membrane topology prediction algorithms (Moller et al., 2001).

Finally, we have developed a web server for academic users at

the URL http://bioinformatics.biol.uoa.gr/PRED-COUPLE2

METHODS

Datasets used for training and evaluating the method

The dataset that we used to train the pHMMs consists of 158 GPCR

sequences with detailed coupling specificity information that includes

G12/13-coupled promiscuous receptors. This set was constructed as follows.

Coupling information for non-promiscuous Gi/o, Gq/11 and Gs-coupled

GPCRs was derived from Alexander et al. (2005). We retrieved 123

such GPCRs. Since our aim was not to exclude G12/13-coupled receptors

or other promiscuous receptors from the predictions of the method, we

enriched the coupling data of this primary dataset (Alexander et al.,

2005) with information regarding such GPCRs. Detailed coupling informa-

tion for 65 such receptors was retrieved after an exhaustive search in the

literature from review articles (Hermans, 2003; Riobo and Manning, 2005;

Wong, 2003) as well as several individual articles that focus on elucidating

GPCR coupling specificity. Therefore, the final dataset contains 188 GPCRs.

While training the pHMMs, we excluded from this enlarged dataset

30 sequences of promiscuous receptors that have not been shown to couple

to members of the G12/13 family of G-proteins. This simplification was made

in order to avoid multiplicity of sequences among training sets for different

coupling groups. However, for training the hidden Markov models (HMMs),

a total of 226 GPCR-G-protein experimentally determined interactions (dis-

tributed among the 158 GPCRs, since this dataset includes 35 promiscuous

receptors, all coupled to G12/13 proteins) were used. The distribution of

interactions among the four families of G-proteins was 96 Gi/o, 59 Gq/11,

36 Gs and 35 G12/13.

In order to improve the efficacy of the ANN in predictions for promis-

cuous GPCRs, we used all sequences in the extended dataset (188 in total) to

train the ANN. Therefore, the 30 promiscuous receptors in the combined

dataset, which have not been shown to couple to members of the G12/13

family of G-proteins, were included in the training set for the ANN. These

30 receptors participate in 66 experimentally determined interactions with

G-proteins, which are divided among the three remaining families of

G-proteins as follows: Gi/o, 26; Gq/11,20 and Gs, 20. Thus, the dataset

used to train the ANN included all 188 GPCR sequences of the enlarged

dataset.

All sequences in this study were retrieved from the UniProt (Bairoch

et al., 2005) database. From the 188 sequences utilized in different training

phases of the method, 181 belong to human GPCRs, three belong to mouse

receptors and four to viral GPCRs. The mouse GPCRs were used as sub-

stitutes for their human homologues that lacked annotation for transmem-

brane segments, which is needed in the training phase of the method. The

viral GPCRs included in the training sets are members of the Chemokine

family that have been shown to couple to G12/13 proteins (Rosenkilde et al.,

2001). Therefore, the majority of sequences in the training set are non-

homologous (with the exception of the viral receptors).

Training the hidden Markov models

We performed an exhaustive search for profiles that discriminate between

distinct coupling groups of GPCRs, in a manner similar to that of a previ-

ously published method by our group (Sgourakis et al., 2005). Based on the

annotation of transmembrane segments found in the UniProt entries (FT

lines), we extracted all intracellular sequence regions (the three intracellular

loops and the C-terminus), extended by seven amino acid residues towards

the membrane. Several experimental studies have shown that these regions

interact with G-proteins (Erlenbach et al., 2001; Wess, 1993). For each one

of the four coupling groups of GPCRs, we constructed multiple alignments

of these sequence regions with CLUSTALX (Thompson et al., 1994). For all

the alignments, we used the BLOSUM 30 series substitution matrices, start-

ing gap opening penalty of 10 and gap extension penalty of 0.10.

Based on alignment column scores produced by CLUSTALX, we isolated

low-entropy (high-scoring) alignment blocks from the aforementioned align-

ments. We then explored these alignment blocks for sub-blocks that could

discriminate between different coupling groups of GPCRs. For every pos-

sible sub-block of length greater than seven alignment columns, a pHMM

was constructed with the hmmbuild program of the HMMER software pack-

age. The discriminative power of each pHMM was evaluated in a query

against all GPCR sequences of the primary dataset, by measuring the

Coverage (i.e. percentage of positives that score a lower E-value than the

lowest E-value scoring negative example in the dataset). The highest scoring

pHMM for each low entropy block was selected and added in the final

library. The result of this exhaustive search was a library of 25 refined

pHMMs.

In order to assess the efficacy of discovered pHMMs in discriminating

between different GPCR coupling groups we performed a query of all GPCR

sequences in the primary dataset against the refined library with the hmmp-
fam program of the HMMER package. In this search, a default cutoff of two

was applied to E-value results from all profiles. To produce the final output,

results from individual profiles that characterize the same coupling group of

GPCRs were combined with the QFAST algorithm (Bailey and Gribskov,

1998). Although this approach performs very well with non-promiscuous

GPCRs, as we have demonstrated in a previous method (Sgourakis et al.,

2005), its sensitivity for promiscuous receptors was no more than 76%.

However, the refined profiles discovered by this method can discriminate

between non-promiscuous GPCRs with high sensitivity and specificity.

Therefore, instead of using the QFAST algorithm, we trained a feed-

forward back-propagated ANN (Bishop, 1995) that takes as input the scores

from individual profiles and produces the final prediction for each one of the

four coupling groups.

Table 1. Cross-validation results for all GPCR/G-protein interactions in the

dataset

Sensitivity Specificity CCR

Gi/o 117/122 (96%) 59/66 (89%) 176/188 (94%)

Gq/11 76/79 (96%) 102/109 (94%) 178/188 (95%)

Gs 51/56 (91%) 122/132 (92%) 173/188 (92%)

G12/13 34/35 (97%) 145/153 (95%) 179/188 (95%)

Total 278/292 (95%) 428/460 (93%) 706/752 (94%)

Predictions for all interactions in the dataset evaluated on a five-fold cross-validation test,

including those performed by promiscuous receptors. The set comprises 188 receptors

that participate in 292 experimentally determined interactions with G-proteins. The

method demonstrates high sensitivity and specificity. CCR, correct classification rate.

N.G.Sgourakis et al.
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Artificial neural network architecture and training

For the development of all ANNs utilized in this method we used the

version 3 of the Nevada back propagation ANN simulation platform

(http://www.scs.unr.edu/nevprop/)(Goodman, 1996).

The input data for the feed-forward ANN are the 25 scores from individual

pHMMs in the refined library (Fig. 1). As output, the network produces the

posterior probability that the sequence that produced these scores couples to

a specific G-protein family. Thus, the outputs are four numbers ranging from

0 to 1 that correspond to final predictions for each family of G-proteins. After

observation of the outputs of all GPCRs in the extended dataset, a safe

(empirical) cutoff of 0.3 was applied to discriminate between positive

and negative predictions.

A standard feed-forward neural network was used, with a sigmoid transfer

function and a single hidden layer of 10 neurons. All possible connections

were allowed between the input units and the hidden-layer neurons, as well

as between the former neurons and the final output units. The back-

propagation algorithm was applied in training the ANN, with random initial

weights. The learn rate was set to 0.0001 and the weight decay to �0.001. All

networks trained during the development of this method reached the train

criterion by the 160th epoch, and produced a C-index (that is the area under

the diagram of sensitivity versus specificity) of �1, demonstrating high

correct classification rate in the training set. In order to avoid optimization

on the training set (overfitting), we applied the early stopping procedure

dividing each time the training set equally between training and validation

sets (Bishop, 1995).

Cross validation

The entire procedure described above was repeated five times, by dividing

the training dataset of 188 GPCR sequences in five balanced sets. Each of

these sets contained approximately the same number of interactions, equally

distributed among the four coupling groups. In each round of cross validation

we used four sets to train the pHMMs as well as the ANN, while one set was

set aside for evaluating the method. As we have already mentioned in the

Datasets section, promiscuous receptors that have not been shown to couple

to members of the G12/13 family of G-proteins were not included in training

the pHMMs, but were used instead for training the ANN. Thus, the proced-

ure was repeated five times and the results from each round were added to

produce the final evaluation of the method (Table 1).

Improving the specificity of the method against

non-GPCR sequences

Although the method described above showed high specificity and

sensitivity among GPCRs, it produced many false predictions for non-

GPCR sequences. This effect may have been caused by remote similarities

of GPCR intracellular loops with loops from other proteins that are not

GPCRs, as well as by the small length of these regions resulting in

insignificant hits. In a previous method published by our group

(Sgourakis et al., 2005), this problem was overcome by implementing

GPCR profiles from the Pfam database (Bateman et al., 2004) to filter

non-GPCR sequences in a preceding step. However, many novel putative

GPCR sequences are not recognized by any of the Pfam profiles. In order to

optimize the method for use against unknown sequences from recently

sequenced genomes, we have implemented the QFAST algorithm to com-

bine E-values produced by all profiles in the refined library (regardless of

their coupling selectivity) and use the output to discriminate between GPCR

and non-GPCR sequences. This implementation was found to be very accur-

ate in filtering non-GPCR sequences before proceeding to the neural network

and was incorporated in the final method. In addition, the tool that is avail-

able through our web server also utilizes pHMMs from the Pfam database to

filter the query sequence before executing the main method. Indeed, the

library of Pfam profiles has been updated, in comparison with the previous

method, to include nine additional profiles that characterize various families

of GPCRs.

RESULTS AND DISCUSSION

The predictions of the method for non-promiscuous GPCRs are very

accurate. The coupling specificities for all 123 non-promiscuous

receptors in the dataset are predicted with 100% sensitivity and

92% specificity in a 5-fold cross-validation procedure, for all

three classes of non-promiscuous receptors. This means that all

experimentally determined interactions have been correctly pre-

dicted, as well as nine not observed promiscuous interactions

(false positives). However, the great advantage of this method is

its ability to produce reliable predictions for promiscuous GPCRs

also. Since, to the best of the authors’ knowledge, all G12/13-coupled

receptors are promiscuous this case also includes predictions of

interactions with G12/13 proteins.

The method demonstrates high sensitivity and specificity. In a

self-consistency test, correct classifications were obtained for 99%

of all GPCR-G-protein interactions in the dataset, while false inter-

actions are overpredicted with a rate of <1%. In order to assess

whether the results of the method are dependent on optimization to

the training set, a 5-fold cross-validation test was performed, as

explicitly described in the Materials and methods section. Correct

classification rate measurements from this procedure (Table 1) show

an insignificant decrease in comparison with measurements

obtained from the self-consistency test; therefore the method is

not overfitted to the training set.

Predictions for interactions performed by promiscuous receptors

are also accurate, demonstrating a correct classification rate of 85%

Fig. 1. ANN Architecture. A feed-forward ANN is implemented to

produce the final output of the method. Scores obtained from the 25 profile

hidden Markov models of the refined library are fed into the network through

an equal number of units at the input layer (for simplicity only four scores are

depicted as inputs). For instance, Gs-loop1 corresponds to the score of the

profile that characterizes the 1st inner loop of Gs-coupled receptors. Ten

hidden units intervene between the input and output layers, with maximum

connectivity (all-against-all). The final outputs of the network are four num-

bers, produced by the output units, which correspond to the posterior prob-

ability of coupling with each family of G-proteins. For simplicity, most

connections between the input and hidden layers have been omitted from

the diagram.

Prediction of GPCR coupling to G-proteins
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in the dataset of all 65 promiscuous receptors used for training the

method (detailed results for each GPCR are presented in the

Supplementary information, see Abstract). Predictions for interac-

tions with G12/13 proteins are predicted with a correct rate of 95%,

demonstrating high sensitivity (97%) and specificity (95%). How-

ever, it should be noted that promiscuous interactions are being

experimentally identified with direct and indirect methods; there-

fore overpredictions for such receptors could actually be observed

using high-resolution methods. Such ambiguous cases of promis-

cuous receptors are widely observed in the literature (Riobo and

Manning, 2005).

An example that demonstrates the validity of our results for

promiscuous receptors is that of the human cytomegalovirus–

encoded GPCR named US28. This receptor has been found to

interact with chemokines and shows similarity to the human chemo-

kine receptors. According to an experimental study by Casarosa et
al. (2003), US28 shows promiscuous coupling to members of dif-

ferent G-protein families, while its homologue in rat cytomega-

lovirus R33 couples entirely to Gi/o. These experimental

observations agree with our predictions, despite the fact that R33

was not even included in the training set. Furthermore, our method

predicts the experimentally determined coupling specificity (Gq/11)

for the novel GPCR GPRg1 (Matsuo et al., 2005). For the same

receptor, our method also predicts coupling to Gi/o proteins, but with

a smaller posterior probability.

When querying a sequence against the refined library there is no

need to extract the intracellular regions, since the profiles are very

specific. Therefore, this method does not rely on user-supplied

membrane topology information or prediction. This feature

makes the tool suitable for analysis of orphan GPCRs, such as

the Arabidopsis thaliana 7TM receptor GCR1, which has been

experimentally found to interact with the G-protein a subunit

GPA1 (Pandey and Assmann, 2004). This is the only G-protein

a subunit identified in the genome of A.thaliana (Apone et al.,
2003; Assmann, 2002). Furthermore, Pandey and Assmann

(2004) have shown that this interaction is dependent on the GPCR’s

intracellular domains. Our method predicts interaction of this recep-

tor only with members of the Gi/o family of a subunits. Indeed, in a

BLAST (Altschul et al., 1997) query of GPA1 against all G-proteins

in the gpDB database (Elefsinioti et al., 2004), members of the Gi/o

family dominate the best scoring hits (E-value below e�63, lower

than any member of the other three families). In fact, the

Arabidopsis Ga subunit is �30% identical with mammalian sub-

units of the Gi/o family, while most of this conservation is located in

the regions that determine the coupling specificity for the entire

G-protein complex (Jones, 2002; Jones and Assmann, 2004). For

instance, the N-terminal sequence of the protein, a region shown to

interact with the activated receptor (Roginskaya et al., 2004), is

similar between GPA1 and members of the Gi/o family. In addition,

experimental data from Cryptococcus neoformans show that a

homologue of GPA1 inhibits adenylate cyclase (Alspaugh et al.,
2002), a function commonly attributed to Gi/o a subunits. These

findings signify the resemblance of GPA1 to members of the Gi/o

family and imply the evolutionary ancestry of Gi/o-coupled GPCRs

mediated pathways among fungi, plants and animals. Another

example comes from the recently identified class of GPCRs

PTH11 from the pathogenic fungus Magnaporthe grisea, one of

the largest classes of fungal GPCRs (Kulkarni et al., 2005).

Using our method, several receptors of this class were also predicted

to interact with Gi/o-like proteins. This class of GPCR-like proteins

is one of the most ancient, since there is evidence of its existence in

fungi 1210 Mya (Kulkarni et al., 2005). However, currently there

are no experimental data that indicate physical interaction with G-

proteins.

Several methods have been reported so far for the prediction of

GPCRs coupling specificity to G-proteins. However, they are all

limited to the three classes of G-proteins. The methods that

implement regular expression patterns (Moller et al., 2001), a

Naı̈ve Bayes model (Cao et al., 2003) and hidden Markov models

respectively (Sreekumar et al., 2004) rely on some extent on

membrane topology information and their limitations have been

already described extensively in Sgourakis et al. (2005). A previous

method developed by our group utilizes refined pHMMs of high

discriminative power. However, results from individual hits were

combined in a single step by the QFAST algorithm. This is con-

ceptually similar to a minimal ANN with one output unit and no

hidden layers. Since interactions between GPCRs and G-proteins

are not equally distributed among GPCR intracellular regions, it

is clear that an ANN with a hidden layer would provide a

much more efficient model. Furthermore, in the current

method, we have developed a larger and more efficiently trained

library of refined pHMMs that include profiles for G12/13 coupled

receptors.

Recently, a method that apart from the receptor’s sequence

requires information of its ligand has been presented (Yabuki

et al., 2005). Authors claim a correct classification rate of 85%,

by combining HMMs and support vector machines (SVMs) to per-

form the prediction. Although the method is available online, it has

some serious disadvantages. First, the requirements of ligand spe-

cificity render it inapplicable for cases of putative/orphan GPCRs,

where this information is unknown. Second, this method utilizes

HMMs to predict the family of a GPCR in a preceding step and then

links this prediction with G-protein coupling specificity. However,

several cases have been reported for GPCRs that belong to the same

subtype, and have demonstrated different coupling specificities

(Wess, 1998). Finally, the authors mention using the structure of

rhodopsin as template to calculate the boundaries of transmembrane

a-helices in the training phase of the method. However, they do not

mention details of the prediction algorithm they use. This step is

very important for the particular method, since the parameters used

in SVMs are dependent on the location of these regions. Thus, the

method is bound always to predict seven transmembrane segments

(as well as coupling to G-proteins), even for non-transmembrane

proteins. Therefore, the method does not control appropriately for

the rate of false positives, a fact that renders questions about its

applicability as a stand-alone pipeline for large-scale GPCR ana-

lysis in sequenced genomes.

Throughout the literature GPCRs are traditionally classified in the

four aforementioned coupling groups. However, it should be noted

that G-proteins consist of more GPCR interaction groups, than the

traditionally defined Gi/o, Gq/11, Gs and G12/13 families. A study that

implemented chimeric G-proteins clearly demonstrated that distinct

GPCR coupling groups exist within the Gi/o family, as exemplified

by 5-HT1A, 5-HT1B Serotonin and M2 muscarinic receptors that

couple with Gi1 but not Gt (Slessareva et al., 2003). Furthermore,

members of the Gq/11 family of G-proteins have been showed to

mediate the activation of phospholipase C for several Gs- and Gi/o-

coupled receptors (Ho et al., 2001). Therefore, classification

N.G.Sgourakis et al.
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of GPCRs according to G-protein coupling to four groups may be

considered obsolete. Perhaps the availability of more precise experi-

mental data will allow a classification scheme that focuses at the

lowest level.

Furthermore, with the implementation of GPCR-specific profiles

from Pfam (Bateman et al., 2004), the current method efficiently

filters non-GPCR sequences; all sequences in two independent test

sets comprising 1133 globular and 1356 transmembrane proteins

(Papasaikas et al., 2003) not classified as GPCRs were recognized as

such by our method. This accomplishment has not been achieved by

any of the aforementioned methods that perform a similar task.

In conclusion, we have developed a method that efficiently clas-

sifies GPCRs according to their coupling specificity to the four

families of G-proteins, including G12/13-coupled receptors. To the

best of the authors’ knowledge, this is the first published method

that performs this task. In addition, the method presented in this

study produces reliable predictions for promiscuous receptors as

well, a task not performed by any other published method. Another

advantage of the method, in comparison with most previously pub-

lished methods (excluding a method published by our group), is the

fact that no membrane topology information is required to perform

reliable predictions. We report high sensitivity and specificity, as

evaluated by the 5-fold cross-validation procedure. A web server

running the application has been developed, and is freely available

for non-commercial users.

We expect that predictions from our web server will be useful for

GPCR researchers in designing experiments to screen orphan

GPCRs for potential ligands, as well as for large-scale Bioinform-

atics analyses in published proteomes. The challenges in GPCR

coupling prediction for the future are more accurate predictions

that distinguish between members of the same G-protein family.

This task relies mainly on the availability of more precise biochem-

ical data from high-resolution experiments.

Conflict of Interest: none declared.
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