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Abstract
Motivation: Sensitive detection and masking of low-
complexity regions in protein sequences. Filtered
sequences can be used in sequence comparison without
the risk of matching compositionally biased regions. The
main advantage of the method over similar approaches
is the selective masking of single residue types without
affecting other, possibly important, regions.
Results: A novel algorithm for low-complexity region
detection and selective masking. The algorithm is based
on multiple-pass Smith–Waterman comparison of the
query sequence against twenty homopolymers with infinite
gap penalties. The output of the algorithm is both the
masked query sequence for further analysis, e.g. database
searches, as well as the regions of low complexity. The
detection of low-complexity regions is highly specific for
single residue types. It is shown that this approach is
sufficient for masking database query sequences without
generating false positives. The algorithm is benchmarked
against widely available algorithms using the 210 genes of
Plasmodium falciparum chromosome 2, a dataset known
to contain a large number of low-complexity regions.
Availability: CAST (version 1.0) executable binaries are
available to academic users free of charge under license.
Web site entry point, server and additional material: http:
//www.ebi.ac.uk/research/cgg/services/cast/
Contact: ouzounis@ebi.ac.uk

Introduction

The explosion of sequence information requires extensive
sequence comparison for the detection of homologies and
the prediction of function using sequence similarity. One
of the most widely used approaches and a necessary step

∗To whom correspondence should be addressed.

for any further analysis is the searching of databases using
newly sequenced proteins as queries for the identification
of homologues.

Rapid and sensitive algorithms have been developed to
perform homology searches in sequence databases, such
as BLAST (Altschul et al., 1997) or FASTA (Pearson,
1990). When high sequence similarity is detected between
a query sequence and a well-characterized database entry,
a reliable function prediction for the query sequence can
be obtained.

However, some of the high-scoring database entries
may contain compositionally biased regions of amino
acid residues, also known as ‘low-complexity’ regions
(Wootton, 1994). These hits may result in erroneous
function predictions, because the sequence similarity is
due to this effect and not necessarily to genuine homology.
The terms ‘compositionally biased’ and ‘low-complexity’
regions are interchangeably used herein.

Algorithms that filter sequences for low-complexity
regions have been developed to effectively process queries
before a sequence database search is performed. Two
such methods are XNU (Claverie and States, 1993) and
SEG (Wootton and Federhen, 1993). XNU identifies
repeats on the basis of a self-comparison of the query
sequence (Claverie and States, 1993), while SEG detects
low-complexity regions based on an information measure
(Wootton and Federhen, 1993). Both methods alter the
query sequence by replacing the low-complexity regions
with X symbols (undefined residue type) as whole seg-
ments, a process known as ‘masking’. The masking of
biased regions has significantly improved the reliability
of homology detection and, consequently, the quality of
function predictions by homology.

Here we describe a different method for low-complexity
region detection and masking, called CAST (complexity
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analysis of sequence tracts). The method differs from
previous approaches in that single residue types are
detected and masked for database searching. As a by-
product of the detection step, low-complexity regions are
extracted with high specificity for single residue types and
can be used for further study.

System and methods
The CAST program is written in ANCI C, and developed
on a Sun Ultra 10 Workstation. The code has been
ported to various platforms, including Solaris, SGI IRIX,
AIX and Linux. Executables for other platforms are
available from the authors on request. Compiled versions
allow users to vary the algorithm parameters. A web
server has also been implemented and is available via
the WWW, starting at http://www.ebi.ac.uk/research/cgg/
services/cast/.

Algorithm
Formulation of the problem
In contrast to previous work, low-complexity regions in
protein sequences are defined by an empirical criterion,
as those regions that score high in homology searches
with degenerate sequences composed of a single amino
acid type (homopolypeptides). This formulation arises
from general experience in database searches, where even
the most degenerate sequences can give high scores to
biased regions in absence of any real sequence similarity
(Figure 1). This definition is reminiscent of previously
described (but not further elaborated) approaches: in an
extensive search for unidentified bacterial open reading
frames, a collection of known compositionally biased
proteins was used to detect sequences of unusual bias and
exclude them (Robison et al., 1994).

In the extreme formulation of this approach, homopoly-
meric peptides can be used as the baseline for the detection
of low-complexity regions. By definition, homopolypep-
tides do not contain any real sequence information at all.
Each one can be completely characterized by two values:
its monomer type and length. Evidently, such a homopoly-
mer will produce high similarity scores with proteins (or
domains) of similar composition, not depending on the ac-
tual sequence of these proteins.

Supposing that the fractions of different residue types
a, b in a search and a test sequence respectively are
statistically unrelated events, then the probability to find a
match of residue types a and b could be readily calculated
from the independent residue frequencies as:

pab = fa pb (1)

where fa, pb are the fractions of amino acid types a, b in
the search and test sequences respectively.

Scoring all possible a − b matches with a proper
comparison matrix M composed of elements ma,b, the
average expected score over a region of length l would
be:

l
∑
a,b

(pabma,b) = l
∑
a,b

( fa pbma,b). (2)

Higher scores reflect similar sequence patterns. As we
admit any local region of length l in both proteins, we
can ignore the factor l. Consequently, the frequencies fa
and pb correspond to the local residue frequencies in the
two compared regions of the search (test) protein. If we
consider a particular region in the test protein, the residue
composition is invariant and the sum score over all residue
types can be performed. Therefore, the only remaining
variable is the composition of the search sequence faβ and
equation (2) can be written as:∑

a,b

( fa pbma,b) =
∑

a

fa

∑
b

(pbma,b) =
∑

a

( faCa) (3)

where Ca is a parameter clearly related only to the residue
type a in the search sequence.

Residue frequencies fa are bounded between 0 and 1
and sum up to 1 (as required for random variables).
Therefore, the last part of equation (3) is an interpolation
between the 20 possible values Ca and can only result in
scores between the smallest and the largest value of Ca .
The maximum obtainable sum is the case where the sum is
equal to the largest Ca , arbitrarily sorted as C1. A general
case, where the maximum score is always obtained, is
when the corresponding residue frequency f1 equals to 1,
which corresponds to the homopolymer. Therefore, one of
the 20 homopolymers will always have the highest score
obtainable by any unrelated sequence.

Certainly, this argument does not apply if the two com-
plex sequences share more than just a similar composi-
tion. In this case, the complex sequence can have much
higher scores that reflect real sequence similarity. There
is a well-developed statistical theory allowing the estima-
tion of likelihood for such similarities to arise by chance
(Karlin and Altschul, 1990).

Detection of low-complexity regions
Based on the above idea, the problem can be stated as
searching an artificial database consisting of 20 degenerate
protein sequences of arbitrary length, each one being a
homopolymer based on one of the 20 natural amino acid
residue types. A homology search of a protein against
this ‘bias-database’ will only report significant hits, if
the search protein contains regions of ‘unusual’ amino
acid composition. The ‘homologue’ found in this search
immediately identifies the type of bias and the ‘region of
homology’ identifies the region of bias.

In analogy to this concept of a bias-database that
can be used with any homology search program, the
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Length = 810
Score = 91.3 bits (223), Expect = 2e-18
Identities=53/137(38%),Positives=70/137(50%),Gaps=17/137 (12%)

Q: 1 RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 60
+RRR R RRRR R R R R R RR R +R + R+RR + RRRR + +R R R

S: 132 QRRREHEREERRRRERERERERGRGRRDENERDPKREQEERQRREQERRRREQEQRERER 191

Q: 61 RRRR-------------RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR----RR 103
R R RR + RR + RRRR + + RR R+RR R +R RR

S: 192 RGERDEEDDENQRDPDWRREQERREQERRRREQEQERRERQRRGGRDDEDENQRDPDWRR 251

Q: 104 RRRRRRRRRRRRRRRRR 120 ‘Q: QUERY SEQUENCE’ [polyR polymer]
++RR + + RR R RR IDENTITY: R; SIMILARITY: +

S: 252 EQKRREQEQERRERERR 268 ‘S: DATABASE TARGET’ [gi|3808061]

Fig. 1. Example of comparing a homopolymer sequence against a natural protein sequence. BlastP output (BlastP version 2.0.8, Blosum62
Mutation Matrix) for a 120 residues long query ‘poly-R’ sequence against nrdb. More than 80 hits were reported with an E-value less than
10−11. All Arginine-rich protein sequences score high with the artificial homopolymeric query sequence. The filtering option of Blast was
turned off.

search against the 20 amino acid type homopolymers
can be formulated as an algorithm using a dynamic
programming procedure with the same steps used by
most homology search programs. In this special case, the
search procedure based on the Smith–Waterman algorithm
(Smith and Waterman, 1981) can be simplified, because in
homopolymers the position in the sequence is irrelevant.
Therefore, only a single linear pass over the sequence is
necessary for each residue type a in order to find regions
of maximal score.

Assume a biological sequence r1, r2, r3, . . . , ri , . . . , rn
of length n. A score at position i(1 ≤ i ≤ n) is derived
by adding the value counted at the previous position and
the score given in the mutation matrix for a match of
residue type a with the amino acid type r in the sequence
at position i .

sα
i = ma,ri +

{
sα

i−1, sα
i−1 ≥ 0

0, sα
i−1 < 0 . (4)

Regions of maximal score are identified as stretches in the
resulting run of values that have positive scores and range
from the first positive score to its maximum. Applying
this algorithm for all residue types a, all 20 possible types
of bias are detected. The score at the maximum gives a
quantitative measure for the bias detected with a particular
scoring matrix and the associated type of bias.

In this implementation, gaps are not allowed. This
feature would only introduce more complexity to the
algorithm by the choice of external parameters (the gap
penalties) leading to arbitrary dependencies. According
to the above formulation, the algorithm is equivalent
to multiple passes of a Smith–Waterman comparison
between the query sequence and a set of homopolymers

of equal length, with infinite gap open and elongation
penalties.

Masking low-complexity regions using CAST
To eliminate high scoring matches caused by composition
bias, sequences are prepared for homology searches by
masking biased regions. With currently available methods
(Claverie and States, 1993; Wootton and Federhen, 1993),
masking is done by completely replacing detected biased
regions with stretches of undefined residue type X (Fig-
ure 2). These symbols are treated as ‘unknowns’ in se-
quence comparison. Therefore, matches in this region to
other sequences are drastically down-weighted and non-
biased regions of the proteins become more prominent in
database searches.

The CAST algorithm not only detects regions of compo-
sition bias but also identifies the type of residue a causing
the bias. With this additional information, masking can be
done in a much more subtle and specific manner. Only the
residue type over-represented in the biased region is re-
placed by undefined residue type X, hereafter called ‘bias
type’. All other residues remain unmodified. Therefore,
part of the sequence information is saved even after cor-
recting for the composition bias and can still be matched
to homologous proteins, as illustrated in Figure 2.

As this procedure permits the use of a comparison
matrix, matching non-identical residue types can give
positive scores as well. A bias of one residue type (e.g.
arginine) can lead to high scores for a biased protein of
a similar but not identical residue type (e.g. lysine). To
prevent that unnecessarily many residues are blanked out
due to such cross dependencies, we perform the masking
iteratively. In each iteration, only the residue type with
the highest score is masked, in the corresponding part of
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Query: 1 MPSTVAPIKGQDHFLNLVFPERVAAAYMSPLAQKYPKAALSIASLAGFLLGILKLITFPV 60

MPSTVAPIKGQDHFLNLVFPERVAAAYMSPLAQKYPKAALSIASLAGFLLGILKLITFPV

Sbjct: 1 MPSTVAPIKGQDHFLNLVFPERVAAAYMSPLAQKYPKAALSIASLAGFLLGILKLITFPV 60

Query: 61 LCAAGLFVFPIRGLISCLFHKSFQGCSGYVXXXXXXXXXXXXXIVGIVSCITWAPGFIFP 120

LCAAGLFVFPIRGLISCLFHKSFQGCSGYV IVGIVSCITWAPGFIFP

Sbjct: 61 LCAAGLFVFPIRGLISCLFHKSFQGCSGYVLATFLSLFSLALTIVGIVSCITWAPGFIFP 120

Query: 121 MISVSIAFATVETCFQIYTHLFPALEHKPXXXLKIEIAAAKLPRXXXAPDLNYPXLPTQX180

MISVSIAFATVETCFQIYTHLFPALEHKP LKIEIAAAKLPR APDLNYP LPTQ

Sbjct: 121 MISVSIAFATVETCFQIYTHLFPALEHKPSSSLKIEIAAAKLPRSSSAPDLNYPSLPTQS 180

Query: 181 AXPXQRFXA 189

A P QRF A

Sbjct: 181 ASPSQRFSA 189

Fig. 2. Comparison of SEG and CAST masking. SEG masking for a hypothetical protein taken from the Chlamydia trachomatis genome
(gi|3328394), represented in the Blast output format. The query and subject sequences are identical, so that the biased region can easily be
marked out. The segment at positions 91–103 (green) has been detected as biased, and filtered by replacing all residues with X residues.
CAST detecting and masking a biased region for the same protein. Bias detection is not performed in a limited width window, often revealing
biases that are spread throughout whole sequences. The detected segment (red), with bias caused by the high presence of serine residues (S)
is masked in a more discriminating way: only serine symbols are masked, while the rest of the sequence information remains intact.

the sequence, provided that the score exceeds the chosen
threshold (cut-off). Cross-scoring of similar residues to the
masked one is avoided by this modification. The dynamic
programming sweep is run on the masked sequence to
detect if there are still biased regions with significant score
to be masked. Continuous cycles of masking and detection
are run until no more biased region scores higher than the
cut-off.

The CAST algorithm has been implemented as a
program that identifies and masks composition biased
regions of which the score exceeds a given threshold
(Figure 3). By default, it uses a 40 half-bit threshold, a
value optimized for BLAST homology searches. A variant
of BLOSUM62 (Henikoff and Henikoff, 1992) serves as
the default scoring matrix, calculating the scores for ‘X’
as the mean value of the similarity scores in each row or
column, as previously proposed (Altschul et al., 1994),
to eliminate the effect of the ‘neutral’ masking character
in the next bias detection iteration. Although this scoring
matrix performs well for general comparison purposes,
other comparison matrices and various threshold values
for the scores may be optionally chosen, as parameters.

Results
Speed benchmarks
For a fixed set of program parameters (threshold value,
mutation matrix), it was obviously expected that the time
performance should mainly depend on the total number
of the examined amino acids and the number of the

Fig. 3. Flowchart diagram of the CAST algorithm.

sequences (as some overhead is added due to standard
calculations for all sequences). It should be noted that the
number of iterations cannot be predicted beforehand, and
the performance of the algorithm cannot be evaluated in
terms of a number of parameters, but only by simulation.
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The composition of the tested sequences is critical, as
the number and total size of reported biased segments
is involved in the main output process, where besides
the filtered sequence, a description of the bias type and
the borders of the biased region are reported separately.
While a change in the scoring matrix does not appear to
drastically affect the speed of the program, a change in the
significance threshold has a direct effect in the time needed
to run CAST on a specific set of sequences. The lower the
threshold, the more compositional bias is reported for the
same sequence set.

For the needs of speed benchmarking, 1500 randomly
selected sequences from Swiss-Prot served as the test set.
They were randomly split in five individual subsets of
100–500 sequences. The CAST algorithm was executed
on all these sets using the default comparison matrix
(BLOSUM62) for threshold values 40 (default) and 30.
The execution time is linear with respect to the length of
the query sequence (not shown). Lowering the threshold,
significantly increases computation time (a table with a
speed benchmark is available on the web site as additional
material).

Analysis of the P. falciparum chromosome 2
In order to estimate the performance and reliability of
the CAST algorithm in the detection and masking of
low-complexity segments, extensive tests have been run
on a large number of protein sequences. A systematic
analysis of all 210 translated open reading frames† of
P. falciparum chromosome 2 (Gardner et al., 1998) is
reported. This set was chosen as a complete set of biased
protein sequences from a eukaryotic chromosome. The
choice was also influenced by our previous comparative
study of sequence annotation (Tsoka et al., 1999), utilizing
similarity-based prediction methods. The results have
been obtained employing CAST with the following default
parameters:

• A standard BLOSUM62 comparison matrix, which
is reported to perform best for database searching
(Henikoff and Henikoff, 1993, 1996) and

• A significance threshold of 40 half-bits, a value
optimized for BLAST homology searches (Altschul et
al., 1994).

For 156 out of the 210 sequences (approximately 74%)
CAST identified at least one region of significant bias
(Figure 4). A total of 547 biased regions were detected,
with a mean value of approximately 3.5 regions per biased
sequence (taking into account just the 156 sequences that
contained at least one such segment), or 2.6 regions per
sequence against the whole set. The maximum number

† The public ORF collection includes PFB0165w, which encodes tRNA-Glu.
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Fig. 4. Distribution of detected low-complexity regions per protein
sequence for all 210 open reading frames of P. falciparum chromo-
some 2. One quarter of the ORFs have no such regions, while almost
another quarter have four or more low-complexity runs. Amino acid
residue type not shown.

of low-complexity segments in a single sequence was 18
(overlaps are allowed throughout this study).

Incorporating the information about the strand where
each gene was coded in, we observed that 85 out of
106 genes (∼80%) present at the sense strand (defined
as ‘Crick’) had at least one biased region, summing
up to 295 detected segments (3.4 segments per biased
sequence). The two sequences that had the largest number
of biased segments (PFB0015 and PFB0020c, with 18 and
17 segments respectively) belong to this set. Examining
the genes present at the complementary strand (defined
as ‘Watson’) showed that 71 out of the remaining 104
sequences (∼68%) had at least one biased region, with
a total of 252 biased regions (3.5 segments per biased
sequence) (a table is available on the web site).

Per residue statistics are easy to obtain, as each biased
region corresponds to a specific amino acid type (Fig-
ure 5). 300 out of the 547 identified regions (∼55%) were
associated with Asparagine (N, 155 regions) and Lysine
(K, 145 regions). This observation is somewhat expected,
as the P. falciparum chromosome 2 is reported to have
a base composition of 80.2% A + T (Gardner et al.,
1998). A Plasmodium-specific protein family (described
as ‘Repetitive Interspersed Family RIF-1’ by the original
authors) also appears to contribute to this effect (rich in
Isoleucine: codons ATT, ATC, ATA). Therefore, as these
proteins appear in distinct clusters on the chromosome,
another interesting question is the occurrence of biased
regions along the chromosome. All 20 possible bias
types have been studied but no clear patterns emerge (not
shown).
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Fig. 5. Absolute counts of low-complexity regions of all 210 open
reading frames of P. falciparum chromosome 2 protein sequences
detected by CAST (y-axis), classified for the 20 amino acid residue
types (x-axis). It is evident that lysine and asparagine-rich regions
dominate.

Positional analysis of the occurrence of biased regions
along the sequences of P. falciparum chromosome 2 has
been performed for all residue types. As in some cases
the sample is too small to obtain meaningful statistics,
e.g. residue types involved in few or even no biased
regions at all (like W as shown in Figure 5), results are
only presented for the five most abundant bias types (N,
K, E, S and D). These residues are responsible for 427
biased regions, almost 80% of the total. We normalised the
start, middle and end positions of the biased segments as
portions of the total length for each examined sequence (a
table with the positional analysis of the five most abundant
residue bias types is available on the web site as additional
material). These results provide some useful knowledge to
the study of biased regions as a stand-alone phenomenon,
apart from the practical application of low-complexity
detection for query masking in homology searches. The
lengths of the biased regions seem to vary, as well as their
locations along the sequences they appear in. For example
the 37 D-rich biased regions in the test set tend to be in the
C-terminal regions (not shown). Such observations could
reveal possible structural and functional characteristics for
proteins of unknown function. We have permitted overlaps
of biased regions in this work so that each type of bias
could be studied as a separate fact. A study of the possible
combinations of different bias types in a sequence is
currently in progress (in preparation).

Finally, we have addressed the issue of whether the
detection of bias regions arises from the global amino acid
composition of the test sequences or the effect of local
low complexity. It appears that despite the unusual global
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Fig. 6. Demonstration that detection of low-complexity regions by
CAST stems from local complexity and not global composition
bias. On the x-axis, the 210 open reading frames of P. falciparum
chromosome 2 are listed (labels every ten ORFs). On the y-axis,
the number of amino acid residue types detected by CAST only (red
bars) or by both CAST and a global bias (counts in parentheses, dark
green bars). Maximum number of residue types is 20. Significant
global composition bias per residue was obtained for all ORFs, by
comparing the observed residue composition of each ORF with the
average residue composition of Swiss-Prot, Release 38: a chi-square
test at 99.5% confidence level with 19 degrees of freedom (chi-
square value = 38.6) was used.

composition of some sequences for certain residue types,
the principal effect of detection originates from local bias
composition (Figure 6).

Comparison to other methods
CAST has also been compared to the widely used SEG
method. The set of 210 ORFs of P. falciparum chromo-
some 2 served as the test set to obtain some statistics
on the performance of both methods in detecting and
masking biased regions. In our comparison, the analysis
with SEG was performed with the default parameters
optimized for low-complexity masking of many amino
acid sequences, as described by the authors in the
distribution package (Wootton and Federhen, 1993): a
trigger window length (W) of 12, a trigger complexity
(K2(1)) of 2.2 bits and an extension complexity (K2(2))
of 2.5 bits. SEG reports composition bias in almost 90%
of the sequences (188 out of 210), with a slight tendency
to over-detect biased regions compared to CAST (156
out of 210 sequences, or 74%). A total number of 1321
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biased regions are reported by SEG, with a mean value of
approximately seven biased regions per biased sequence.

Another comparison between SEG and CAST involved
the filtering of all the 210 ORFs of P. falciparum
chromosome 2 used as queries in database searches
(Tsoka et al., 1999). For each ORF, we created four
differently masked variants by applying either SEG or
CAST with low and high stringency parameters. Each of
these variants was then used to search the non-redundant
protein sequence database using BLASTP (Altschul et
al., 1997). We then compiled an overview of common
hits, comparing rank and significance of each hit for the
four differently masked query variants. We also listed
any additional hits only returned by individual variants.
We further recorded some statistics and the functional
assignments as previously reported (Tsoka et al., 1999).
The results of this analysis using E-value cut-off scores of
10−30 and 10−06 are available at the CAST web site.

It is noteworthy that there is a large number of ORFs
where all four masked variants returned the same set of
homologues (occasionally with slightly different E-value
ordering). This is particularly striking for the stringent cut-
off E-value of 10−30, where 143 out of 210 ORFs (68%)
are insensitive to the masking strategy employed. Even
for the more relaxed cut-off E-value of 10−06, for 63 out
of 210 ORFs (30%) the choice of masking algorithm and
parameters made no difference in the sets of homologues
retrieved. We manually examined the differences for the
other 147 ORFs of the latter search: roughly half of them
show marginal differences only.

However, where large discrepancies were observed,
queries masked by SEG generally returned many more
hits below the E-value cut-off score. Often, the difference
in numbers was striking: for example, PFB0765w, when
masked by SEG yielded 139 hits while when masked by
CAST returned only itself, agreeing with its assignment
as ‘unique’ sequence (Tsoka et al., 1999). In another
example, PFB0335c when masked by SEG returned
83 hits versus 48 hits when masked by CAST. The extra
hits found by SEG contained a much higher ratio of
apparently unspecific matches, due to excessive filtering.
There were only six sequences which, when masked by
CAST, returned more hits than when masked by SEG
(PFB0130w, PFB0215c, PFB0290c, PFB295w, PFB0410c
and PFB0695c). Many of the additional hits for this set
appear to be genuine homologues (result summaries may
be downloaded from the CAST web site). In summary,
CAST appears to allow more specific database searches
without sacrificing sensitivity.

Searching databases for low-complexity regions
CAST has been developed to detect and mask unusual se-
quence composition in a single protein sequence by com-
paring it against a database of homopolymers composed

of a distinct amino acid type each. Following this concept,
a single homopolymer from this database can be com-
pared to a complete database of natural proteins. Such a
database search readily identifies the set of natural proteins
that have composition bias of the corresponding residue
type. This search can easily be performed for all 20 ho-
mopolymers and adequately reveals all kinds of biased re-
gions existing in any sequence database, while at the same
time biased regions can be classified by residue type. This
database scan can be performed by any available homol-
ogy search program. Similarly to the example of the ‘poly-
R’ sequence against nrdb shown in Figure 1, such searches
reveal intriguing patterns in the protein database. These
patterns usually appear in a regular repetitive manner and
may reflect some structural and functional principles.

In the command line implementation of CAST, an
automatic search of a flat database file in FASTA format
against the bias database can be performed. A next step
would be to perform homology searches of filtered query
sequences against a CAST-filtered database and optimize
the CAST parameters for a better performance of well-
tested, currently existing homology search methods.

Discussion
The CAST method is a novel low-complexity detection
method that can be used both for masking query sequences
for further analysis and the study of single amino acid
residue types in protein sequences.

CAST is an indirect descendant of the ‘biasdb’
program that has been extensively used in the GeneQuiz
project (Andrade et al., 1999), and allowed database
searches with much lower significance cutoff values. One
major improvement over biasdb is the treatment of the
calculation of the ‘X’ residues as the mean value of the
similarity scores.

A similar algorithm based on self-comparison has been
reported (Marcotte et al., 1998), that primarily aims
to detect repeats in protein sequences. Some of the
short-range repeats may indeed represent low-complexity
regions but that problem was not further addressed.

CAST represents a useful method that can be used either
for case-based sequence analyses to assist experimental bi-
ologists with sequence query filtering or massive sequence
comparison for bioinformatics research.
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